

EPD Background Report

On behalf of the Aluminum Extruders Council November 2022

Client:	Aluminum Extruders Council	
Title:	EPD Background Report: Cradle-to-Gate Assessment for Aluminum Extrusions	
Report version:	V1.1	
Report date:	11/04/2022	

©2022 Sphera. All rights reserved

On behalf of Sphera Solutions, Inc. and its subsidiaries

Document prepared by

Rifat Karim

Rifat karim

November 04, 2022

RKarim@sphera.com

+ 1 857.225.3804

Gaëlle Guillaume

Diana Pacheco

Athar Kamal

Quality assurance by

Christoph Koffler

Technical Director, Americas

2022

Under the supervision of

Sean Daley

Director, Sustainability Consulting, Americas

This report has been prepared by Sphera with all reasonable skill and diligence within the terms and conditions of the contract between Sphera and the client. Sphera is not accountable to the client, or any others, with respect to any matters outside the scope agreed upon for this project.

Regardless of report confidentiality, Sphera does not accept responsibility of whatsoever nature to any third parties to whom this report, or any part thereof, is made known. Any such party relies on the report at its own risk. Interpretations, analyses, or statements of any kind made by a third party and based on this report are beyond Sphera's responsibility.

If you have any suggestions, complaints, or any other feedback, please contact us at <u>servicequality@Sphera.com</u>.

Table of Contents

Tab	le of C	onter	nts	3
List	of Fig	ures.		5
List	of Tab	oles		6
List	of Acr	onym	s	7
Glo	ssary.			8
1.	Goal	of th	e Study1	0
2.	Scop	be of t	he Study1	1
2	2.1.	Prod	uct System1	1
2	2.2.	Decl	ared Unit1	2
2	2.3.	Syste	em Boundary1	3
	2.3.2	1.	Time coverage1	4
	2.3.2	2.	Technology coverage1	4
	2.3.3	3.	Geographical coverage1	4
2	2.4.	Alloc	ation1	4
	2.4.2	1.	Co-Product allocation1	4
	2.4.2	2.	End-of-Life allocation1	4
2	2.5.	Cut-o	off Criteria1	5
2	2.6.	Sele	ction Of LCIA Methodology And Impact Categories1	5
2	2.7.	Inter	pretation To Be Used1	6
2	2.8.	Data	Quality Requirements1	17
2	2.9.	Soft	vare And Database1	17
2	2.10.	Verif	ication1	17
3.	Life	Cycle	Inventory Analysis	8
3	3.1.	Data	Collection Procedure1	8
3	3.2.	Prod	uct System1	8
	3.2.2	1.	Overview of Product System 1	8
	3.2.2	2.	Production process1	8
	3.2.3	3.	Product composition	22
	3.2.4	4.	Production process	25

♦ sphera[™]

	3.2.	5.	End-of-life	32
3	3.3.	Bac	kground Data	33
	3.3.	1.	Fuels and energy	33
	3.3.	2.	Raw materials and processes	34
	3.3.	3.	Transportation	37
4.	LCIA	A Resu	ılts	38
2	1.1.	Over	all Results	38
	4.1.	1.	Mill finish extrusion	38
	4.1.	2.	Anodized extrusion	40
	4.1.	3.	Painted extrusion	41
	4.1.	4.	Thermally treated anodized extrusion	42
	4.1.	5.	Thermally treated painted extrusion	44
2	1.2.	Con	tribution Analysis By Life Cycle Stages	45
2	4.3.	Fab	rication Contribution Analysis	47
2	1.4.	Sen	sitivity Analysis	51
2	4.5.	Sce	nario Analysis	52
5.	Inte	rpreta	ition	54
5	5.1.	Iden	tification Of Relevant Findings	54
5	5.2.	Assu	Imptions And Limitations	54
5	5.3.	Data	a Quality Assessment	55
	5.3.	1.	Precision and completeness	55
	5.3.	2.	Consistency and reproducibility	55
	5.3.	3.	Representativeness	55
5	5.4.	Mod	el Completeness And Consistency	56
	5.4.	1.	Completeness	56
	5.4.	2.	Consistency	56
5	5.5.	Cond	clusions And Recommendations	56
	5.5.	1.	Conclusions	56
	5.5.	2.	Recommendations	57
Ref	erenc	es		58

List of Figures

Figure 2-1 Schematic for the net scrap approach (credit given at the end-of-life)
Figure 3-1: Extrusion manufacturing diagram (Module A)19
Figure 3-2: Extrusion manufacturing process schematic
Figure 3-3: Pour & debridge process
Figure 3-4: Polyamide strip process21
Figure 3-5: Primary and secondary billet modeling approach24
Figure 4-1: Mill finish extrusion relative environmental impacts of all life cycle stages
Figure 4-2: Anodized extrusion relative environmental impacts of all life cycle stages
Figure 4-3: Painted extrusion relative environmental impacts of all life cycle stages
Figure 4-4: Thermally treated anodized aluminum extrusion relative environmental impacts of all life cycle stages
Figure 4-5: Thermally treated painted aluminum extrusion relative environmental impacts of all life cycle stages
Figure 4-6: Mill finish aluminum extrusion relative environmental impacts from different processing stages
Figure 4-7: Anodized aluminum extrusion relative environmental impacts from different processing stages
Figure 4-8: Painted aluminum extrusion relative environmental impacts from different processing stages
Figure 4-9: Thermally treated anodized aluminum extrusion relative environmental impacts from different processing stages
Figure 4-10: Thermally treated painted aluminum extrusion relative environmental impacts from different processing stages
Figure 4-11: Result variation for A1-A3 GWP across all facilities (1000 kg of mill-finished Aluminum) 51
Figure 4-12: Sensitivity analysis - Impact of primary ingot and recycled content on mill-finished Aluminum extrusions
Figure 4-13: Effect of source of primary aluminum on cradle-to-gate carbon footprint (RNA: North America, CA: Canada, CN: China, RME: Middle East)
Figure 5-1: Map indicating locations of companies that participated in the study

List of Tables

Table 2-1: Participating AEC members and reported operations11	
Table 2-2: Technical data for aluminum extrusions (6xxx alloy, tempers T1-T6)	,
Table 2-3: Life cycle modules included in EPD13	;
Table 2-4: System boundaries	;
Table 2-5: Declared indicators of environmental impacts, use of resources, and generation of waste 15)
Table 3-1: Metal composition of AEC extruded aluminum products	,
Table 3-2: Metal Composition for cast house ingots	,
Table 3-3: 6063 aluminum alloy chemical composition (% by mass) as per Teal Sheet (AA, 2018)22	,
Table 3-4: Aluminum extrusion primary and secondary feedstocks	;
Table 3-5: Material composition of the extrusion products under study***	ŀ
Table 3-6: Inputs and outputs for billet casting (cast house)25)
Table 3-7: Inputs and outputs for extrusion process	,
Table 3-8: Inputs and outputs for painting process	,
Table 3-9: Inputs and outputs for anodization process)
Table 3-10: Inputs and outputs for thermal improvement process	, -
Table 3-11: Key energy datasets used in inventory analysis	;
Table 3-12: Key material and process datasets used in inventory analysis	ŀ
Table 3-13: Transportation datasets used in the inventory	,
Table 4-1: Life cycle impact assessment results per metric ton of aluminum extrusion products (Mill Finish)	;
Table 4-2 : Life cycle impact assessment results per metric ton of aluminum extrusion products (Anodized))
Table 4-3 : Life cycle impact assessment results per metric ton of aluminum extrusion products (Painted)	
Table 4-4 : Life cycle impact assessment results per metric ton of thermally treated anodized aluminum extrusion products 42	2
Table 4-5 : Life cycle impact assessment results per metric ton of thermally treated painted aluminum extrusion products	Ļ
Table 4-6 Statistical metrics of LCIA results for 1 metric ton of extruded Aluminum (mill finish) across all facilities 50)

List of Acronyms

AA	Aluminum Association
ADP	Abiotic Depletion Potential
AEC	Aluminum Extruders Council
AP	Acidification Potential
CML	Centrum voor Milikunde Leiden
EoL	End-of-Life
EPA	(United States) Environmental Protection Agency
EP	Eutrophication Potential
EPD	Environmental Product Declaration
GaBi	Ganzheitliche Bilanzierung (German for holistic balancing)
GWP	Global Warming Potential
IPCC	Intergovernmental Panel on Climate Change
ISO	International Organization for Standardization
LCA	Life Cycle Assessment
LCI	Life Cycle Inventory
LCIA	Life Cycle Impact Assessment
NMVOC	Non-Methane Volatile Organic Compound
ODP	Ozone Depletion Potential
PCR	Product Category Rules
SDS	Safety Data Sheet
SFP	Smog Formation Potential
TDS	Technical Data Sheet

TRACI Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts

Glossary

Allocation

"Partitioning the input or output flows of a process or a product system between the product system under study and one or more other product systems" (ISO 14040:2006, section 3.17)

Background system

"Those processes, where due to the averaging effect across the suppliers, a homogenous market with average (or equivalent, generic data) can be assumed to appropriately represent the respective process ... and/or those processes that are operated as part of the system but that are not under direct control or decisive influence of the producer of the good...." (JRC 2010, pp. 97-98) As a general rule, secondary data are appropriate for the background system, particularly where primary data are difficult to collect.

Closed-loop and open-loop allocation of recycled material

"An open-loop allocation procedure applies to open-loop product systems where the material is recycled into other product systems and the material undergoes a change to its inherent properties."

"A closed-loop allocation procedure applies to closed-loop product systems. It also applies to open-loop product systems where no changes occur in the inherent properties of the recycled material. In such cases, the need for allocation is avoided since the use of secondary material displaces the use of virgin (primary) materials."

(ISO 14044:2006, section 4.3.4.3.3)

Critical Review

"Process intended to ensure consistency between a life cycle assessment and the principles and requirements of the International Standards on life cycle assessment" (ISO 14044:2006, section 3.45).

Foreground system

"Those processes of the system that are specific to it ... and/or directly affected by decisions analyzed in the study." (JRC 2010, p. 97) This typically includes first-tier suppliers, the manufacturer itself and any downstream life cycle stages where the manufacturer can exert significant influence. As a general rule, specific (primary) data should be used for the foreground system.

Functional unit

"Quantified performance of a product system for use as a reference unit" (ISO 14040:2006, section 3.20)

Life cycle

A view of a product system as "consecutive and interlinked stages ... from raw material acquisition or generation from natural resources to final disposal" (ISO 14040:2006, section 3.1). This includes all material and energy inputs as well as emissions to air, land and water.

Life Cycle Assessment (LCA)

"Compilation and evaluation of the inputs, outputs and the potential environmental impacts of a product system throughout its life cycle" (ISO 14040:2006, section 3.2)

Life Cycle Inventory (LCI)

"Phase of life cycle assessment involving the compilation and quantification of inputs and outputs for a product throughout its life cycle" (ISO 14040:2006, section 3.3)

Life Cycle Impact Assessment (LCIA)

"Phase of life cycle assessment aimed at understanding and evaluating the magnitude and significance of the potential environmental impacts for a product system throughout the life cycle of the product" (ISO 14040:2006, section 3.4)

Life cycle interpretation

"Phase of life cycle assessment in which the findings of either the inventory analysis or the impact assessment, or both, are evaluated in relation to the defined goal and scope in order to reach conclusions and recommendations" (ISO 14040:2006, section 3.5)

1. Goal of the Study

The Aluminum Extruders Council (AEC), formed over 70 years ago, is the trade association for the North American aluminum extrusion industry. With approximately 60 U.S. and Canadian extruder members (operating over 100 extrusion manufacturing locations) and a similar number of aluminum producers and other industry suppliers, AEC members represent an estimated 75% of North American aluminum extrusion production.

Today, AEC focuses on four distinct missions:

- 1. Promoting the effective application of aluminum extrusions to solve product challenges in a wide range of industries. Whether helping create more energy efficient buildings, improving automotive performance, facilitating the transition to LED lighting, or advancing products in a wide range of other industries, extrusions are playing a major role.
- 2. Advancing extrusion technology sustainability and competence, via member training, networking, benchmarking, best-practice sharing and research & development projects and conferences.
- 3. Ensuring fair trade.
- 4. Developing the human capital required for the coming years via apprentice programs, upskilling, and collaboration with educational institutions and workforce development programs

The goal of the study is to create two industry average Environmental Product Declarations (EPDs): one for mill finished, anodized, or painted aluminum extrusions, and a second for thermally improved aluminum extrusions (anodized and painted). Analyses were conducted in accordance with the International Standard ISO 14044. The LCA report and final EPDs conform with ISO 14025, ISO 21930, and ISO 14044 standards and will enable AEC to provide EPDs to their customers.

The goal and scope of the LCA were informed by the *Product Category Rule (PCR) for Aluminum Construction Products* published by UL Environment (ULE) which describes the format and requirements for creating an EPD for aluminum and aluminum alloy products in the construction industry (ULE, 2022).

The intended audience for this report includes the program operator, UL Environment (ULE), as well as the verifier who will be assessing the conformance of the life cycle assessment (LCA) to the chosen PCR. The audience further includes AEC and its participating member companies. To foster further transparency, Sphera recommends that this report be made available upon request to all third parties to whom the EPD is provided. Company-specific information has been aggregated to create a production volume weighted industry average based on product mass; therefore, confidential information specific to each company is not disclosed in this report.

Results presented in this document do not constitute comparative assertions. However, these results will be disclosed to the public via EPDs, which architects and builders will be able to use to compare AEC's products with similar products presented in other EPDs that follow the same PCR. To be published by a program operator, the EPD will undergo a verification for conformance to the PCR.

This study was commissioned by AEC and performed by Sphera, Inc. Conformance of the background LCA study as well as the final EPDs with the guiding PCR and with ISO 21930, ISO 14025, ISO 14040, and ISO 14044 was verified by ULE.

2. Scope of the Study

The following sections describe the general scope of the project to achieve the stated goals. This includes, but is not limited to, the identification of specific product systems to be assessed, the product function(s), functional unit and reference flows, the system boundary, allocation procedures, and cut-off criteria of the study.

2.1. Product System

This declaration covers a range of aluminum extrusion products manufactured by AEC members in North America. The products considered in this declaration are as follows:

- Mill finished aluminum extrusion
- Painted aluminum extrusion
- Anodized aluminum extrusion
- Thermally improved, painted aluminum extrusion
- Thermally improved, anodized aluminum extrusion

While thermally improved mill finish extrusion may also be produced and sold, the incidence of this configuration is so low it precludes meaningful data, hence the Mill-finish thermally treated Aluminum extrusions are excluded in this report and the final EPD.

The information in this document is based on information supplied by 8 AEC member companies in the U.S. and Canada. The data comes from 31 separate production facilities, with a total of nearly 100 extrusion presses ranging in size from 6" to 18" circle size, 10 anodizing facilities, 10 paint facilities (liquid and powder), 6 thermal management operations, and 13 cast houses that produce scrap-based extrusion billets.

The participating AEC members and facilities under their operational control are shown in Table 2-1.

Total extrusion production by the AEC participants is 2.46 billion lbs which is 38% of the total Aluminum extrusions in North America for the 2020 production year (AA, 2022).

Company	Extrusion	Anodizing	Painting	Thermal Improvement	Cast House
Almag Aluminum, Inc.	Х				
Apel Extrusions Limited	Х	Х	Х	Х	
Bonnell Aluminum	Х	Х	Х	Х	Х
Hydro Extrusion N.A.	Х	Х	Х	Х	Х
Keymark Aluminum	Х	Х	Х	Х	Х
Pennex Aluminum Company, LLC	Х				Х
Sierra Aluminum	Х	Х	Х	Х	Х
Western Extrusions Corp.	Х	Х	Х	Х	
Number of Sites (Total)	27	10	10	6	13

Table 2-1: Participating AEC members and reported operations

Aluminum extrusions in 6000 series alloy (the predominant alloy produced by the participants) are approximately 96.2% to 98.6% aluminum by mass, with alloying elements composing the remaining mass. The percent aluminum by mass of the painted, anodized, and thermally improved extrusions varies by less than 5% from this, and can be found in Table 3-5. Additional technical data can be found in Table 2-2.

Name	Value	Unit
Density	2.66 - 2.84	(kg/m3) x 103
Melting point (typical)	475 - 655	°C
Electrical conductivity (typical) at 20°C / 68°F	Equal volume: 16 - 36	Ms/m (0.58 x %IACS)
Thermal conductivity (typical) at 25°C / 77°F	170 - 210	W/m·K
Average coefficient of thermal expansion (typical) 20°C to 100°C / 68°F to 212°F	22.3 - 23.9	per °C
Modulus of elasticity (typical)	69 - 73	МРа х 103
Hardness (typical)	40 - 95 (47 - 96)	HB (Rockwell E)
Yield strength (min)	60 - 330	МРа
Ultimate tensile strength (min)	120 - 370	МРа
Breaking elongation (min) (50mm & 4D)	>4	%
Chemical composition	Varying by alloy, Al 95.2 - 98.6	% by mass
Density	2.66 - 2.84	(kg/m3) x 103
Melting point (typical)	475 - 655	°C

Table 2-2: Technical data for aluminum extrusions (6xxx alloy, tempers T1-T6)

At the plants for each of the participating AEC members, the aluminum is extruded and then either anodized, painted, or left unfinished (mill finish). The finished aluminum is then either sold as is or a thermal break is applied. Downstream fabrication operations, such as tight-tolerance cutting, machining, and assembly, are excluded due to the wide diversity of such operations. Because of their many attributes and the variety of available finishing options, aluminum extrusions are useful in a myriad of products in various market sectors, including building and construction, transportation, electrical and energy, medical and consumer, machinery, military, and air. Some uses in these market sectors are as follows:

- **Building and construction:** windows, doors, curtain walls, façade systems, skylights, canopies, louvers, light shelves, interior partitions, bridges, etc.
- **Transportation:** automotive structural and chassis components, crash management systems, BEV battery enclosures, auto body and trim components, truck and trailer components, rail passenger and freight car components, etc.
- Electrical and energy: electronics housings and heat sinks, LED lighting components, solar energy mounting and racking systems, cable raceways, conduit, etc.
- **Medical and consumer durables:** components of recreation products, home & garden tools, appliances, ambulatory care products, medical diagnostic equipment, etc.

2.2. Declared Unit

The declared unit is **one metric ton (1,000 kg) of extruded aluminum**, including the optional surface treatments described in section 2.1.

2.3. System Boundary

The scope of the study includes raw material sourcing and extraction, manufacturing, and end-of-life (EoL) disposal of aluminum extrusions, along with a substitution credit for recycling in future product systems. The included life cycle stages are summarized in Table 2-3 according to the EN 15804 standard referenced in the PCR.

Pr	oductio	on	Instal	llation			U	se stag	je				End-c	of-Life		Next product system
Raw material supply (extraction, processing,	Transport to manufacturer	Manufacturing	Transport to building site	Installation into building	Use / application	Maintenance	Repair	Replacement	Refurbishment	Operational energy use	Operational water use	Deconstruction / demolition	Transport to EoL	Waste processing for reuse, recovery or recycling	Disposal	Reuse, recovery or recycling potential
A1	A2	AЗ	A4	A5	B1	B2	В3	В4	B5	В6	В7	C1	C2	СЗ	C4	D
Х	Х	Х	MND	MND	MND	MND	MND	MND	MND	MND	MND	х	Х	Х	Х	Х

Table 2-3: Life cycle modules included in EPL	Table 2-3:	Life cycle	modules	included	in	EPD
---	------------	------------	---------	----------	----	-----

X = declared module; MND = module not declared

Table 2-4: System boundaries

Included	Excluded
 ✓ Raw materials production (bauxite, chemicals, minerals, etc.) (A1) ✓ Upstream electricity generation for production (A1) ✓ Inbound transportation of raw materials (A2) ✓ Product manufacturing and packaging (A3) 	 Construction of capital equipment Maintenance and operation of support equipment (e.g., employee facilities, etc.) Packaging of raw materials Human labor and employee commute Fabrication (e.g., cutting, bending, welding Transport of finished products to
 Use of auxiliary materials, water, and energy during manufacturing (A3) 	installation site (A4), and application of product (A5)
 Emissions to air, water, and soil during manufacturing (A3) 	 Use stage (B1-B7)
✓ Disposal (C4) and recycling credits (D)	
 Internal transportation (within a manufacturing facility) (A3) 	
 ✓ Deconstruction (C1), transport to EoL (C2), and waste processing (C3) 	

 Substitution credit for recycling in future product systems (D)

2.3.1. Time coverage

The data are intended to represent aluminum extrusion production during the calendar years 2020 to 2021. As such, each participating AEC member company provided primary data for 12 consecutive months for the year 2020 while one company reported for July 2020 to June 2021. These data were then used to calculate average production values for each company.

2.3.2. Technology coverage

This study is intended to be representative of the aluminum extrusion and associated finishing processes. All foreground data was collected from AEC members for their facilities and is intended to represent average extrusion and finishing technologies.

2.3.3. Geographical coverage

This background LCA represents AEC members' products produced in the U.S. and Canada. Background data are representative of these countries, with exceptions noted in Section 0.

Regionally specific datasets were used to represent each manufacturing location's electricity consumption, however, proxy datasets were also used as needed for raw material inputs to address lack of data for a specific material or for a specific geographical region. For some companies, some of the unit operations are partly in Canada and United states, in those cases U.S. electricity average grid mix dataset is used. These proxy datasets were chosen for their technological representativeness of the actual materials.

2.4. Allocation

2.4.1. Co-Product allocation

No co-product allocation occurs in the product foreground system. Allocation was used in the GaBi background data. For further information on a specific product see http://www.gabi-software.com/international/databases/gabi-databases/.

2.4.2. End-of-Life allocation

End-of-Life allocation generally follows the requirements of ISO 14044 and ISO 21930.

A closed loop recycling approach was used in this study. The EoL scrap destined for recycling was looped back into the system to provide the scrap material needed in Module A. The impacts and credits associated with the remaining "net scrap" are then reported in module D.

The net scrap approach is based on the perspective that material that is recycled into secondary material at end of life will replace an equivalent amount of virgin material. Hence a credit is given to account for this material substitution. A schematic of the Module D calculation is presented in Figure 2-1.

Figure 2-1 Schematic for the net scrap approach (credit given at the end-of-life)

2.5. Cut-off Criteria

In the case of data gaps for unit processes, the cut-off criteria as defined by ISO 21930 were applied. All available energy and material flow data have been included in the model. In cases where no matching life cycle inventories are available to represent a flow, proxy data have been applied based on conservative assumptions regarding environmental impacts. No inputs constituting greater than 1% of mass input or energy usage were excluded from the study. The total flows cut off in this study never exceeded 5% of either the mass or energy usage in any one life cycle module.

The choice of proxy data is documented in Chapter 3, and the effects of using the proxy data on the results and conclusions are discussed in Chapter 5

2.6. Selection Of LCIA Methodology And Impact Categories

The life cycle impact assessment (LCIA) categories and other indicators considered to be of high relevance to the goals of the project are listed in this chapter. TRACI 2.1 (EPA, 2012), IPCC AR5 (IPCC, 2013) and CML-IA v4.8 (CML, 2016) impact assessment methodology frameworks are used for results reporting for this EPD. The impact assessment categories and other metrics required by the PCR are shown in Table 2-5. GWP excludes biogenic carbon as there are no relevant biogenic carbon removals or emissions in the life cycle. There is no calcination, carbonation, or combustion of waste from non-renewable sources.

Table 2-5: Declared indicators of environmental impacts, use of resources, and generation of
waste

Indicator	Unit	Methodology	
Life Cycle Impact Assessment Results			
Global warming potential, excluding biogenic carbon (GWP 100)	kg CO ₂ eq	IPCC AR5 (IPCC, 2013)	
Ozone depletion potential (ODP)	kg CFC-11 eq	TRACI 2.1	
Acidification potential (AP)	$kg SO_2 eq$	(Bare, 2012) — (EPA, 2012)	
Eutrophication potential (EP)	kg N eq		

Smog formation potential (SFP)	kg O₃ eq	
Abiotic depletion potential for fossil resources (ADP _{fossil})	MJ LHV	CML-IA v4.8 (CML, 2016)
Resource Use		
Renewable primary resources used as energy carrier (fuel) (RPR _E)	MJ LHV	ISO 21930 (ISO, 2017), informed by the ACLCA
Renewable primary resources with energy content used as material (RPR $_{\mbox{M}}$)	MJ LHV	Guidance document (ACLCA, 2019)
Non-renewable primary resources used as an energy carrier (fuel) (NRPR $_{\text{E}}$)	MJ LHV	
Non-renewable primary resources with energy content used as material (NRPR $_{\rm M}$)	MJ LHV	
Secondary materials (SM)	kg	
Renewable secondary fuels (RSF)	MJ LHV	
Non-renewable secondary fuels (NRSF)	MJ LHV	
Recovered energy (RE)	MJ LHV	
Use of net fresh water resources (FW)	m ³	
Output Flows and Waste Categories		
Hazardous waste disposed (HWD)	kg	ISO 21930 (ISO, 2017),
Non-hazardous waste disposed (NHWD)	kg	informed by the ACLCA
High-level radioactive waste, conditioned, to final repository (HLRW)	kg	(ACLCA, 2019)
Intermediate- and low-level radioactive waste, conditioned, to final repository (ILLRW)	kg	
Components for re-use (CRU)	kg	
Materials for recycling (MR)	kg	
Materials for energy recovery (MER)	kg	
Recovered energy exported from the product system (EE)	MJ LHV	

It shall be noted that the above LCIA impact categories represent impact *potentials*, i.e., they are approximations of environmental impacts that could occur if the emissions would (a) follow the underlying impact pathway and (b) meet certain conditions in the receiving environment while doing so. In addition, the inventory only captures that fraction of the total environmental load that corresponds to the functional unit (relative approach). LCIA results are therefore relative expressions only and do not predict actual impacts, the exceeding of thresholds, safety margins, or risks.

2.7. Interpretation To Be Used

The results of the LCI and LCIA were interpreted according to the goal and scope. The interpretation addresses the following topics:

- Identification of significant findings, such as the main process step(s), material(s), and/or emission(s) contributing to the overall results
- Evaluation of completeness, sensitivity, and consistency to justify the exclusion of data from the system boundaries as well as the use of proxy data.
- Conclusions, limitations, and recommendations

2.8. Data Quality Requirements

The data used to create the inventory model shall be as precise, complete, consistent, and representative as possible with regards to the goal and scope of the study under given time and budget constraints.

- Measured primary data are considered to be of the highest precision, followed by calculated data, literature data, and estimated data.
- Completeness is judged based on the completeness of the inputs and outputs per unit process and the completeness of the unit processes themselves. The goal is to capture all relevant data in this regard.
- Consistency refers to modeling choices and data sources. The goal is to ensure that differences in results reflect actual differences between product systems and are not due to inconsistencies in modeling choices, data sources, emission factors, or other artefacts.
- Reproducibility expresses the degree to which third parties would be able to reproduce the results of the study based on the information contained in this report. The goal is to provide enough transparency with this report so that third parties are able to approximate the reported results. This ability may be limited by the exclusion of confidential primary data and access to the same background data sources.
- Representativeness expresses the degree to which the data matches the geographical, temporal, and technological requirements defined in the study's goal and scope. The goal is to use the most representative primary data for all foreground processes and the most representative industry-average data for all background processes. Whenever such data were not available (e.g., no industry-average data available for a certain country), best-available proxy data were employed.

An evaluation of the data quality with regard to these requirements is provided in section 5 of this report.

2.9. Software And Database

The LCA model was created using the GaBi 10 Software system for life cycle engineering, developed by Sphera Solutions, Inc. The GaBi 2021 LCI database (CUP 2021.2) provides the life cycle inventory data for several of the raw and process materials obtained from the background system.

2.10. Verification

The EPD development process requires verification by the selected program operator, UL Environment. Verifications were conducted in accordance with ISO 14025 and ISO 21930 requirements and the referenced PCR. The third-party review was provided by Thomas Gloria from Industrial Ecology Consultants.

3. Life Cycle Inventory Analysis

3.1. Data Collection Procedure

All primary data were collected using customized data collection templates, which were sent by email to the respective data providers in the participating facilities. Upon receipt, each questionnaire was cross-checked for completeness and plausibility using mass balance, stoichiometry, as well as internal and external benchmarking. If gaps, outliers, or other inconsistencies occurred, Sphera engaged with the data provider to resolve any open issues.

3.2. Product System

3.2.1. Overview of Product System

AEC member companies produce surface-treated (anodized, painted), thermally improved, and/or mill finished aluminum extrusions.

The product life cycle modules are designated by ISO 21930, which specifically applies to the creation of building products and material EPDs. Modules A1-A3 represent the manufacturing, cradle-to-gate stage of the product. They can be further divided into the following modules:

- A1 -- Raw material extraction and processing, processing of secondary material input
- A2 -- Transport of materials to manufacturer
- A3 -- Manufacturing

The use stage is excluded in this study, but the disposal is considered because of the significant recycling potential of the aluminum product. Modules C1 – C4 are required by the PCR. They are defined as:

- C1 -- Deconstruction
- C2 -- Transport to the disposal site
- C3 -- Waste processing
- C4 -- Disposal

However, C1 and C3 are to be reported as zero according to the PCR as they are assumed to fall below the cutoff criteria defined by ISO 21930. C2 is assumed as 100 km by truck. Materials for recycling (MR - 95%) for aluminum is reported in C1 module.

Module D is defined as benefits and loads beyond the product system boundary.

3.2.2. Production process

Figure 3-1 provides an overview of the manufacturing process for the aluminum extrusion products. The production stage starts with extraction and processing of aluminum ingot, billet, and ancillary materials,

followed by the transportation of these materials to the plant. Billets, either cast on site or purchased from an external supplier, are extruded into profiles using steel dies. The extruded profiles may then be anodized or painted. Mill finished and surface-treated profiles may then undergo a thermal breaking process (thermal improvement). At EoL, the product is disassembled (e.g., during deconstruction of a building's façade) and materials are recovered for recycling. Raw material extraction and processing, processing of secondary material input, transport of materials to manufacturer, and manufacturing are included in the production, or cradle-to-gate, stage of the product. The use stage is excluded from system boundaries, but the disposal is considered because of the significant recycling potential of aluminum products.

Figure 3-1: Extrusion manufacturing diagram (Module A)

Extrusion

The production stage starts with extraction and processing of aluminum ingot, billet, and ancillary materials, followed by the transportation of these materials to the plant.

The extrusion manufacturing process, as shown in Figure -1 takes cast extrusion billet (round bar stock, produced from direct chill molds and typically ranging in diameter from 6 to 14 inches) and produces extruded profiles. The process begins with an inline preheat furnace that elevates the temperature of the billet to a predetermined level, around 900°F depending on the alloy. If not already cut to length, the billet is then sheared and placed into a hydraulic press, which then forces the semi-plastic billet through a heated steel die to form the desired

shape. The length of the resulting extrusion is dictated by the take-off tables. The extrusions are air cooled or water quenched, with specific quench parameters dependent on alloy and desired microstructure and properties. The extrusion is then clamped and stretched to straighten the profile. Subsequently, the stretched profile is cut to length and then aged for several hours at elevated temperature (e.g. 350°F) to achieve desired properties.

Figure 3-2: Extrusion manufacturing process schematic

Painting

Extrusions to be painted are typically cleaned and then treated with a pre-coat in either a vertical or horizontal paint booth. Depending on the ultimate paint performance desired, a variety of pre-coats and primers may be employed. After pre-treatment, the extrusions will be coated with a liquid or powder paint and baked. Various paint formulations may be used depending on the desired performance.

Anodization

If extrusions are to be anodized, they are cleaned and etched (with either caustic or acid etch) in a series of baths. Subsequently, they are immersed in an acid electrolyte bath and an electrical current is passed through the solution. A cathode is mounted to the inside of the anodizing tank, while the aluminum extrusions act as an anode. Oxygen ions are released from the electrolyte and combine with aluminum atoms at the surface of the extrusion being anodized, thereby creating a durable aluminum oxide layer fully integrated with the underlying aluminum. Organic or inorganic colorants can subsequently be added. The final step is a sealing stage to enhance durability.

Thermal improvement

Two alternative thermal barrier processes are typically used:

- A "pour & debridge" system in which a polyurethane liquid is allowed to harden in a "pocket" designed into the extrusion. The aluminum forming the pocket is then removed to allow the hardened polyurethane to act as an insulator.
- A polyamide strip system where a rigid polyamide strip is mechanically crimped between two extrusions designed to accept the strip—thus creating the insulator.

Basic pour & debridge and polyamide strip systems are shown below. Note that advanced approaches with multiple voids and/or insulating materials can be used for high levels of thermal performance.

Pour & Debridge: Creation of a thermal barrier using pour & debridge is a 3-step process:

1. Prepare

to encapsulate an insulating

conditioned with special

equipment to create a

"mechanical lock"

insulating element

Figure 3-3: Pour & debridge process

3. Debridge The metal "bridge" is mechanically removed from the bottom of the channel, eliminating the conductive aluminum element and producing a non-metal-tometal thermal barrier

1. Profile knurling

A knurling wheel is used to produce "teeth" between 0.15 mm and 0.30 mm long in a pocket of the inner and 0.30 time extruded profiles that will be joined by the Strip to comprise the frame. These "teeth" will bite into the Strip during the crimping process and insure adequate shear strength for the composite profile.

2. Strip insertion

Typically, the Polyamide Strip is pulled or pushed into the extrusion profile, using specialized equipment. However, manual insertion can also be used, and there are assembly methods that pull or push the profile onto the Strip. The preferred method is up to the installer.

Figure 3-4: Polyamide strip process

3. Crimping

Three sets of wheels rotate the extrusion onto the Strip and extrusion onto the Strip and mechanically lock the components together. Over 1300 pounds of pressure is applied in stages, and the resulting aluminum/Strip assembly will then act as a load-bearing composite. Shear testing is typically conducted periodically to verify that the process has produced an assembly that will perform structurally as required.

3.2.3. Product composition

Extruded aluminum products produced in North America typically contain a considerable proportion of metal recycled from aluminum scrap. The average metal composition of North American products, based on metal feedstock information collected from the companies participating in this EPD is shown in Table 3-1.

Table 3-1: Metal composition of AEC extruded aluminum products

Category of Metal Source	Percentage (by mass)
Primary Metal (including alloying agents)	47%
Recovered Aluminum Content	53%

The composition in the cast house aluminum ingots can be broken down into post-consumer and post-industrial scrap based on the available data and is shown in Table 3-2. Some cast house facilities had an input of secondary ingot, which had been categorized as post-consumer scrap for this calculation.

Category of Metal SourcePercentage (by mass)Primary Metal (including alloying agents)30.3 %Recovered Aluminum from Post-Industrial (Pre-Consumer) Scrap50.5 %Recovered Aluminum from Post-Consumer Scrap19.2 %

Table 3-2: Metal Composition for cast house ingots

The definitions for post-industrial and post-consumer aluminum scrap are consistent with ISO 14021/25 and the related interpretations by UL Environment. Post-industrial scrap typically includes extrusion drop-offs from cutting, off-spec material, and scrap generated during subsequent processing by extruders or customers. Post-consumer scrap is scrap that has been used for an intended application as part of a previous product life cycle. It often includes aluminum wheels, wire, and reclaimed material from building demolition or renovation.

Extruded aluminum products produced for different customers, applications, and market sectors may vary substantially in metal composition, ranging from 100% primary aluminum to nearly 100% aluminum scrap. The alloy composition of a typical extrusion product as manufactured by AEC companies is described in Table 3-3.

	Si	Fe	Cu	Mn	Mg	Cr	Zn	Ti	Others (total)	Aluminum
Minimum	0.20				0.45					remainder
Maximum	0.60	0.35	0.10	0.10	0.90	0.10	0.10	0.10	0.15	remainder

Table 3-3: 6063 aluminum alloy chemical composition (% by mass) as per Teal Sheet (AA, 2018)

Extrusions are made from both primary billet and secondary billet, with a varying degree of recycled metal content. Billets are either sourced externally or produced at a company-owned cast house. When produced at a company-owned cast house, internal process (run-around) scrap, post-industrial scrap, and post-consumer scrap are melted together with primary and secondary aluminum ingot feedstock sourced from an external supplier. Extruded aluminum products produced for different customers, applications, and market sectors may vary substantially in recycled content.

Definitions of the feedstocks used in the extrusion process are found in Table 3-4. The definitions of internal process (run-around) scrap, post-industrial scrap, and post-consumer scrap are consistent with the ISO 14021/25 (2006) standards and related interpretations by ULE (ULE, 2022).

Aluminum Source	Definition
Primary Ingot	Prime aluminum that has not been processed in any way since its origination at a smelter
Secondary Ingot	A solid piece of cast scrap aluminum to be cast into billet
Primary Billet	Log or billet produced from hot molten aluminum directly from a smelter with negligible recycled content and that has not been solidified and re-melted prior to casting
Secondary Billet	A solid piece of cast scrap aluminum that originates from aluminum that is not in a molten state from a smelter
Post-Consumer Scrap	Scrap generated by the retirement of a consumer or industrial product e.g. wheels, wire, and reclaimed material from building demolition or renovation
Post-Industrial Scrap (Pre-Consumer)	Scrap generated by industrial or manufacturing waste that can be introduced into a melting process without substantial treatment e.g. extrusion drop-offs from cutting, off-spec material, and scrap generated during subsequent processing by extruders or fabricators
Internal Process (Run-Around) scrap	Scrap generated as part of a repeated closed-loop manufacturing process. Excluded from metal composition declaration.

Table 3-4: Aluminum extrusion primary and secondary feedstocks

Data was only available for primary and secondary aluminum ingot. To ensure that the correct recycled content of purchased aluminum billet was modeled, the approach shown in Figure 3-5 was taken. All scrap was modeled as burden free when it enters the system since the model employs a "net scrap" approach (see section 2.4.2). When companies did not provide data for their own billet, primary ingot was modeled with the AA dataset, and the amount of secondary billet was calculated based on the ratio of primary ingot and aluminum scrap corresponding to the recycled content of the billet. Both primary ingot and aluminum scrap go through a remelting process. When companies were not able to provide the recycled content of their purchased secondary billet, an assumption of 75% recycled content was made based on the industry average.

Figure 3-5: Primary and secondary billet modeling approach

As the extrusion process shapes the aluminum billet, only surface-treatment processes, i.e., anodizing and painting, alter the material content of the finished extrusion process. The percent by mass added by anodizing or painting is not large enough to significantly alter the percent by mass of the aluminum extrusion. The product composition of the extruded, anodized, painted, and thermally improved extrusions are shown in Table 3-5.

	Extrusion, mill finish	Extrusion, painted	Extrusion, anodized**	Thermally improved extrusion, painted	Thermally improved extrusion, anodized**
Aluminum*	100%	>95%	100%	>92%	>96%
Paint		<5%		<5%	
Acrylic	-	9%	-	9%	-
Polyester	-	68%	-	68%	-
PVDF	-	24%	-	24%	-
Thermal break				<4%	<4%
Polyurethane	_	-	-	78%	78%
Polyamide	-	-	-	22%	22%

Table 3-5: Material composition of the extrusion products under study***

*As in Table 2-1, the aluminum extrusion itself prior to painting and/or thermal improvement should have a chemical composition of Al of 96.2% - 98.6%, depending on alloy.

**Anodization chemicals do not adhere to the extrusion.

***Percentages may not add up to 100%, as they are rounded to the nearest percent.

It was also assumed that all secondary billet originated in North America. Secondary includes secondary billet, ingot, and post-consumer, post-industrial, and run-around scrap. On average, secondary billet contains 25% primary aluminum.

3.2.4. Production process

This section provides information on the inputs and outputs of the main unit processes. Unit process information for billet casting, extrusion, painting, anodizing and thermal improvement are found in Table 3-6 to Table 3-10 respectively.

Three of eight companies did not provide data for their own billet, so primary ingot was modeled using the Aluminum Association dataset, and secondary billet was modeled based on the ratio of primary ingot and aluminum scrap corresponding to the recycled content of the billet.

The weighted average is calculated across all company/plants. The 10th percentile is calculated ignoring zero values. Where some companies did not report data for some inputs, the weighted average reported is smaller than the 10th percentile for those cases.

Туре	Flow	Unit	Weighted average	10 th percentile	90 th percentile
Inputs	Primary aluminum ingot	kg	3.06E+02	3.82E+02	2.39E+02
	Secondary aluminum ingot	kg	6.35E+00	4.30E+01	2.31E+01
	Aluminum scrap (external, post-consumer scrap)	kg	2.08E+02	3.90E+02	1.12E+02
	Aluminum scrap (external, post-industrial scrap)	kg	4.48E+02	6.25E+02	1.63E+02
	Aluminum scrap (internal)	kg	1.24E+02	5.76E+02	4.77E+01
Secondary Alloying Elements	Magnesium	kg	2.94E+00	3.96E+00	1.73E+00
	Silicon	kg	1.44E+00	2.34E+00	7.48E-01
	Copper	kg	1.44E+00	2.06E+00	3.43E-01
	Manganese	kg	3.54E-01	6.82E-01	1.69E-01
	Ti Boron	kg	1.16E+00	2.05E+00	6.41E-01
	Chrome	kg	1.78E-01	3.50E-01	7.88E-02
	Vanadium	kg	3.93E-02	1.30E+00	1.58E-01
	Zirconium	kg	1.81E-03	3.47E-02	3.47E-02
	Titanium	kg	6.57E-03	8.27E-02	8.27E-02
	Iron	kg	4.35E-02	1.25E-01	9.26E-02
	Silica	kg	1.88E-01	1.28E+00	1.07E+00
	Salt Flux	kg	1.92E-01	1.04E+00	8.58E-02

Table 3-6: Inputs and outputs for billet casting (cast house)

Ancillary Materials	Bulk O ₂	kg	1.01E-05	1.29E-04	1.29E-04
	Bulk Argon	kg	2.68E+00	2.60E+01	2.97E-02
	Bulk Nitrogen	kg	1.72E-01	6.46E+00	6.46E+00
	Lubricants	kg	9.27E-03	1.37E-01	3.46E-02
	Solvent	kg	2.04E-04	4.29E-03	4.29E-03
	Boron nitride	kg	1.42E-02	9.87E-02	6.70E-03
	Bone ash	kg	5.11E-02	1.36E-01	1.01E-01
	Graphkote	kg	2.19E-03	8.78E-03	8.78E-03
	Sodium Chloride	kg	1.92E-05	8.00E-04	8.00E-04
	Filters	kg	7.26E-02	2.17E-01	2.05E-01
	Oils	kg	3.22E-03	2.74E-02	6.51E-03
Energy	Purchased electricity	MJ	4.20E+02	1.21E+07	5.96E+04
	Natural gas	MJ	3.75E+02	1.55E+07	1.25E+03
	Diesel (internal transport)	kg	6.73E-01	1.04E+05	2.48E+04
	Propane (internal transport)	kg	8.44E-02	2.19E+04	1.39E+03
Water	Municipal water	kg	1.10E+03	2.03E+08	1.06E+03
	Ground water (e.g. on- site well)	kg	6.12E+01	1.44E+07	1.39E+07
Outputs	Aluminum billet	kg	1.00E+03		
Materials for Recovery	Aluminum to recycling (internal)	kg	7.16E+01	1.57E+02	3.24E+01
	Aluminum to recycling (external)	kg	1.51E+01	2.26E+02	2.99E+01
	Steel dies to recycling (external)	kg	1.39E-01	2.93E+00	2.93E+00
Wastes for Disposal	Waste water sent to municipal treatment	kg	6.61E+02	2.82E+03	1.26E+02
	Water treated on-site and discharged to river / lake	kg	3.37E+02	0.00E+00	1.35E+03
	Non-hazardous waste to landfill	kg	5.42E+00	1.33E+01	1.47E+00
	Non-hazardous waste to recovery	kg	1.06E+01	2.57E+01	5.74E+00
	Hazardous waste to recovery (dross)	kg	2.27E+00	2.56E+01	2.45E+01
Emissions to Air	Carbon dioxide	kg	1.67E+02	3.14E+02	2.47E+02
	Carbon monoxide	kg	3.01E-01	4.29E-01	1.15E-01
	Dust (PM2.5)	kg	2.26E-02	4.53E-02	1.94E-02
	Dust (PM10)	kg	4.80E-01	1.91E-01	2.85E-02
	Dust (total)	kg	5.26E-02	1.28E-01	4.19E-02

Methane	kg	1.50E-03	4.77E-03	4.46E-03
Nitrogen oxides	kg	3.31E-01	3.21E-01	7.36E-03
Nitrous oxide (N ₂ O)	kg	2.61E-02	6.68E-03	4.57E-04
NMVOC	kg	1.41E-02	7.00E-02	4.58E-03
Sulfur oxides	kg	4.44E-03	1.78E-02	7.50E-04
HCI	kg	2.83E-04	2.34E+02	2.34E+02
F	kg	5.58E-02	4.63E+04	4.63E+04

Table 3-7: Inputs and outputs for extrusion process

Туре	Flow	Unit	Weighted average	10 th percentile	90 th percentile
Inputs	Primary aluminum billet (purchased)	kg	4.27E+02	1.21E+03	1.55E+01
	Secondary aluminum billet (purchased)	kg	2.29E+02	9.13E+02	1.55E+01
	Post-consumer scrap	kg	7.38E-01	5.83E+02	1.06E+02
	Post-industrial scrap	kg	6.64E+00	5.25E+03	9.57E+02
	Aluminum billet (from own cast house)	kg	7.68E+02	1.64E+03	8.46E+02
	Hydraulic oil	kg	9.85E+00	1.12E+05	9.25E+00
	Dies	kg	4.28E+00	1.86E+01	8.38E-01
Ancillary Materials	Sodium hydroxide (Caustic)	kg	2.65E+00	1.94E+01	1.25E-02
	Sodium hydroxide	kg	1.77E+01	4.47E+01	2.84E+00
	Lubricant	kg	5.38E-02	5.81E-01	1.33E-01
	Trough filters	kg	2.56E-03	5.14E-02	5.14E-02
	Boron Nitride	kg	3.13E-04	7.19E-03	7.19E-03
	Potassium hydroxide	kg	2.24E-03	7.48E-02	7.48E-02
	Chrome phosphate	kg	2.12E-02	7.10E-01	7.10E-01
	Fluoride accelerator	kg	1.31E-02	4.38E-01	4.38E-01
	Aluminum chloride	kg	3.27E-03	1.09E-01	1.09E-01
	Sodium Bisufite 50%	kg	1.13E-02	3.79E-01	3.79E-01
	Bulk Nitrogen	kg	1.68E+00	1.76E+01	2.96E+00
	Die cleaner, cleaning agent (solvent)	kg	1.54E-01	9.70E-01	9.70E-01
	Ammonia Anhydrous	kg	1.31E-02	1.75E-01	3.46E-02
	Pallets	kg	1.65E-04	2.33E+01	4.19E-02
	Wood	kg	4.28E-04	4.66E+01	9.80E-01

	Steel strapping	kg	2.54E-06	9.94E-01	3.49E-02
	Plastic strapping	kg	1.70E-05	1.51E+00	1.02E-01
	Paper	kg	4.05E-05	1.64E+00	9.46E-02
	Cardboard	kg	1.90E-03	3.39E+01	1.49E-01
	Plastic film	kg	1.26E-05	1.02E+00	6.98E-02
	Fabric	kg	1.18E-06	4.37E-01	3.84E-02
	Foam	kg	3.02E-06	6.30E-01	2.54E-03
	Таре	kg	2.13E-06	1.50E+00	1.78E-01
	Fiberglass strapping	kg	3.33E-07	2.63E-01	2.63E-01
Energy	Purchased electricity	MJ	7.02E+03	2.28E+07	1.61E+06
	Natural gas	MJ	8.14E-04	1.34E+08	1.03E+06
	Gasoline (internal transport)	kg	9.63E-03	2.84E+03	5.05E+02
	Diesel (internal transport)	kg	5.46E-01	9.55E+04	3.57E+03
	Propane (internal transport)	kg	1.04E+00	8.83E+04	2.23E+03
Water	Municipal water	kg	5.69E+03	8.37E+07	2.95E+06
	Ground water (e.g. on-site well)	kg	6.63E+01	3.52E+07	1.72E+07
Outputs	Total Aluminum extrusion	kg	1.00E+03		
Materials for Recovery	Aluminum to recycling (internal)	kg	3.00E+02	5.96E+02	1.90E+02
	Aluminum to recycling (external)	kg	1.11E+02	4.95E+02	1.89E+01
	Steel dies to recycling (external)	kg	2.06E+00	6.79E+00	7.87E-01
Wastes for Disposal	Waste water sent to municipal treatment	kg	5.59E+03	2.23E+03	3.46E+02
	Water treated on-site and discharged to river / lake	kg	3.19E+01	2.29E+03	2.29E+03
	Non-hazardous waste to landfill	kg	1.07E+01	5.08E+01	6.17E-01
	Non-hazardous waste to recovery	kg	1.13E+01	5.75E+01	3.72E+00
	Non-hazardous waste to incineration	kg	3.22E-02	1.38E+00	1.38E+00
	Hydraulic oil to disposal	kg	4.85E+00	5.22E+00	4.26E-01
	Spent caustic - solids / sludge - neutralized off-site	kg	3.15E+00	6.66E+01	7.01E+00
Emissions to Air	Carbon dioxide	kg	1.25E+02	4.49E+02	6.14E+01
	Carbon monoxide	kg	9.96E+00	7.30E+01	2.49E-02
	Dust (PM2.5)	kg	3.00E-02	2.65E-01	2.52E-03
	Dust (PM10)	kg	5.80E-02	4.79E-01	5.02E-03
	Methane	kg	1.04E-03	6.31E-03	1.29E-03
	Nitrogen oxides	kg	2.30E-01	5.31E-01	3.14E-02

	Nitrous oxide (N ₂ O)	kg	1.25E-01	7.01E-01	2.30E-04
	NMVOC	kg	1.04E-01	6.56E-01	3.85E-03
	Sulfur oxides	kg	1.40E-02	1.32E-02	3.99E-04
	Other HAPs	kg	2.99E-05	1.57E-03	1.57E-03
	Ammonia	kg	3.86E-03	3.01E-02	1.20E-02
Emissions to Water	Ammonia	kg	3.18E-03	3.09E-02	1.14E-02

Table 3-8: Inputs and outputs for painting process

Туре	Flow	Unit	Weighted	10 th	90 th
			average	percentile	percentile
Inputs	Aluminum extrusion input	kg	1.03E+03	1.09E+03	1.00E+03
Paint/Coatings/ Powder	PVDF (powder)	kg	1.44E-01	8.32E+00	8.32E+00
	Polyester (powder)	kg	7.57E+00	3.92E+01	3.92E+01
Paint/Coatings/ Liquid	PVDF	kg	1.10E+01	4.64E+01	1.36E+01
	Polyester	kg	2.42E+01	9.27E+01	4.12E-01
	Acrylic	kg	4.14E+00	3.46E+01	1.54E+00
	Solvents	kg	6.52E+00	2.28E+01	6.29E-01
Pre-treatment and WW Chemicals	Chrome pre-treatment chemicals	kg	4.48E+01	3.43E+01	4.86E-01
	Non-chrome pre-treatment chemicals	kg	8.50E+00	3.42E+01	1.94E+00
	HOUGHTO-COAT A-830, A-840, A- 860	kg	6.58E-02	3.81E+00	3.81E+00
	Wt-water conditioner	kg	8.03E-01	2.50E+01	2.50E+01
	Sulfuric Acid 93%	kg	1.10E-02	3.43E-01	3.43E-01
	AZOTE (Nitrogen)	kg	2.54E-03	7.93E-02	7.93E-02
	HCFC/HFC Refrigerant	kg	3.97E-05	2.05E-04	2.05E-04
	Lubricant	kg	5.89E-03	5.07E-02	3.90E-02
	Alcohol (Ethanol, Isopropyl alcohol)	kg	6.53E-03	6.80E-02	6.80E-02
	Xylene	kg	1.19E-01	1.24E+00	1.24E+00
	Glycol ether	kg	4.80E-01	5.00E+00	5.00E+00
Energy and Utilities	Water	kg	1.75E+03	3.16E+03	3.28E+02
	Purchased electricity	MJ	3.41E+02	3.32E+03	7.22E+02
	Natural gas	MJ	1.53E+05	7.91E+03	2.38E+03
	Propane	kg	1.28E+00	2.58E+01	1.28E+00

	Gasoline	kg	6.86E-03	7.14E-02	7.14E-02
Outputs	Painted aluminum extrusions	kg	1.00E+03		-
	Scrap (internal)	kg	1.79E+01	8.13E+01	1.33E+01
	Scrap (external)	kg	2.12E+01	8.16E+01	3.05E+01
Wastes for Disposal	Non-hazardous waste to landfill	kg	2.09E+00	1.18E+01	4.55E-01
	Non-hazardous waste to recovery	kg	6.35E+01	3.85E+02	8.88E+00
	Hydraulic oil to disposal	kg	8.27E-02	2.22E+00	2.80E-01
	Wastewater sent to municipal treatment	kg	1.69E+03	3.16E+03	3.43E+02
	Non-hazardous waste to incineration	kg	9.97E-01	9.42E+00	4.14E+00
	NMVOC	kg	2.91E-01	2.05E+00	8.92E-03
	Zinc	kg	1.48E-05	2.25E-04	2.25E-04
	Chromium	kg	1.44E-06	2.20E-05	2.20E-05
	Carbon dioxide	kg	8.37E+01	4.35E+02	5.05E+01
	Carbon monoxide	kg	4.69E-02	2.54E-01	1.34E-02
	Dust (PM10)	kg	1.61E-02	8.72E-02	5.66E-03
	Methane	kg	1.60E-03	8.30E-03	9.74E-04
	Nitrogen oxides (NOx)	kg	8.19E-02	3.63E-01	6.01E-04
	Sulfur oxides (SOx)	kg	4.50E-04	2.26E-03	2.27E-04

Table 3-9: Inputs and outputs for anodization process

Туре	Flow	Unit	Weighted average	10 th percentile	90 th percentile
Inputs	Cleaning agent	kg	1.74E+00	5.85E+00	1.37E+00
	De-oxidizing agent	kg	6.62E+01	1.09E+02	3.05E+01
	Paint	kg	3.08E+00	7.61E+00	3.11E-01
	Etch additive	kg	3.70E+00	3.59E+01	2.51E+00
	Seal additive	kg	2.96E+00	6.92E+00	1.45E+00
	Caustic agent	kg	4.30E+01	1.26E+02	6.79E-01
	Etch acid	kg	7.10E+00	2.23E+01	1.37E+01
	Ammonium hydroxide (NH4OH)	kg	1.07E-01	8.05E-01	8.05E-01
	Defoamer	kg	7.95E-02	4.46E-01	1.46E-01
	Nitric acid (HNO3)	kg	4.96E+00	3.15E+01	3.51E+00
	Non-ionic surfactant	kg	3.39E+00	2.73E+01	6.21E-01
	Rinse smut deterrent	kg	9.23E-02	9.71E-01	9.71E-01

	Seal smut deterrent	kg	1.63E-02	1.71E-01	1.71E-01
	Lubricant/oil	kg	2.72E-02	3.84E-01	3.84E-01
	Coagulant	kg	1.97E-04	1.69E-03	1.69E-03
	H202, de-ox additive	kg	1.27E+00	8.64E+00	1.47E+00
	Magnesium hydroxide	kg	2.95E-01	4.83E+00	4.83E+00
	NH4F	kg	2.21E-01	3.62E+00	3.62E+00
	2532 HI SEAL ADDITIVE	kg	3.47E-01	2.45E+00	2.45E+00
	2513 SEAL, Sodium sulfite	kg	7.92E-01	5.60E+00	5.60E+00
	HCI	kg	3.89E-02	2.75E-01	2.75E-01
	НЗРО4	kg	2.69E+00	1.90E+01	1.90E+01
Ancillary Materials	Steel for clamps and header hardware	kg	7.76E-02	8.38E-01	8.38E-01
	Weld wire	kg	5.78E-03	6.24E-02	6.24E-02
	Lubricant/oil	kg	1.13E-03	1.22E-02	1.22E-02
Energy	Purchased electricity	MJ	7.27E+03	1.04E+04	1.60E+03
	Natural gas	MJ	5.22E+03	1.77E+04	1.39E+02
	Gasoline	kg	2.26E-02	2.15E-01	2.91E-02
	Diesel	kg	3.45E-02	4.88E-01	4.88E-01
	Propane	kg	8.32E-01	2.74E+00	8.53E-01
Water	Municipal water	kg	9.71E+03	3.03E+04	2.74E+03
Outputs	Anodized aluminum extrusion	kg	1.00E+03	-	
Wastes	Aluminum to recycling (internal)	kg	1.31E-02	5.00E+01	1.28E+01
	Aluminum to recycling (external)	kg	4.92E-03	4.58E+01	2.63E+01
	Waste water sent to municipal treatment	kg	6.78E+03	2.77E+04	2.11E+03
	Water treated on-site and discharged to river / lake	kg	4.38E+02	4.73E+03	4.73E+03
	Non-hazardous waste to landfill	kg	7.12E+01	4.12E+02	1.17E+01
	Non-hazardous waste to recovery	kg	3.03E+01	1.92E+02	4.24E+01
	Dross sent to recovery	kg	2.00E+01	2.11E+02	2.11E+02
	Hazardous waste to disposal	kg	5.57E+00	9.13E+01	9.13E+01
Emissions	Carbon dioxide	kg	7.83E+01	3.06E+02	4.65E+01
	Carbon monoxide	kg	2.68E-01	1.64E+00	2.98E-01
	Dust (PM2.5)	kg	7.00E-02	3.59E-01	1.90E-02
	Dust (PM10)	kg	2.48E-02	2.24E-01	2.97E-02
	Dust (total)	kg	9.36E-02	5.33E-01	1.90E-02
	Methane	kg	1.45E-03	6.36E-03	6.36E-03

Nitrogen oxides	kg	9.03E-02	3.12E-01	1.12E-01
Nitrous oxide (N ₂ O)	kg	1.47E-04	6.49E-04	6.49E-04
NMVOC	kg	6.15E-03	2.64E-02	1.67E-02
Sulfur oxides	kg	1.29E-03	6.39E-03	2.15E-03
Ammonia	kg	7.04E-03	2.20E-02	2.20E-02
Nitrogen	kg	1.73E-02	1.87E-01	1.87E-01
Aluminum	kg	3.96E-03	1.74E-02	1.74E-02
Lead	kg	2.88E-05	2.03E-04	2.03E-04
Copper	kg	1.68E-03	1.19E-02	1.19E-02

Table 3-10: Inputs and outputs for thermal improvement process

Туре		Unit	Weighted average	10 th percentile	90 th percentile
Inputs	Painted aluminum extrusion	kg	4.94E+02	9.21E+02	3.54E+02
	Anodized aluminum extrusion	kg	5.04E+02	7.64E+02	1.23E+02
	Polyurethane	kg	3.09E+01	6.16E+01	4.37E+01
	Polyamide	kg	8.75E+00	1.28E+02	7.78E+00
Ancillary Materials	lsocyanic Acid, Polymethylenepolyphenylene	kg	1.68E+01	4.44E+01	4.05E+01
	Thermal Barrier Polymer Part "B"	kg	1.79E+01	4.48E+01	4.40E+01
	Compressor oil	kg	5.81E-03	3.32E-02	3.32E-02
Energy	Purchased electricity	MJ	3.72E+03	1.95E+05	3.54E+02
	Natural gas	MJ	6.31E+03	1.43E+05	5.69E+04
	Gasoline (internal transport)	kg	1.09E-01	6.19E-01	6.19E-01
	Propane (internal transport)	kg	2.16E+00	1.39E+01	1.83E+00
Water	Municipal water	kg	1.08E+04	8.85E+04	2.80E+04
Outputs	Aluminum extrusion to consumer	Kg	1.00E+03		
	Aluminum to recycling (internal)	kg	1.61E+01	5.97E+01	9.64E+00
	Aluminum to recycling (external)	kg	2.86E+01	8.15E+01	1.38E+01
	Wastewater sent to municipal treatment	kg	1.08E+04	8.85E+04	2.80E+04
	NMVOC	kg	3.35E-02	1.91E-01	1.91E-01

3.2.5. End-of-life

At the life cycle level, aluminum was modeled as part of a closed-loop recycling approach. A 95% recycling rate was used for the aluminum extrusion and a credit was assigned to the life cycle equal to the substituted burden of primary production, accounting for the burden from scrap collection, processing, re-melting and

casting. This net credit was reported in module D. The 95% recycling rate is a global estimate for aluminum in the building and transportation sectors (EAA, 2021) (AA, 2022) which has been supported by minimum values published in a United Nations report (UNEP, 2011). The remaining 5% not captured in the recycling loop are landfilled and are reported in module C4.

3.3. Background Data

Documentation for all GaBi datasets can be found at http://www.gabi-software.com/america/support/gabi/.

3.3.1. Fuels and energy

National/regional averages for fuel inputs and electricity grid mixes were obtained from the GaBi 2021.2 databases. Table 3-11 shows the most relevant LCI datasets used in modeling the product systems. Electricity consumption was modeled using national/regional grid mixes that account for imports from neighboring countries/regions.

Material / Process	Geo. Ref.	Dataset name	Data Provider	Ref. Year	Proxy?*
Diesel	US	Diesel mix at filling station	Sphera	2021	No
Electricity	US	Electricity grid mix – AKGD	Sphera	2021	No
	US	Electricity grid mix – AKMS	Sphera	2021	No
	US	Electricity grid mix – AZNM	Sphera	2021	No
	US	Electricity grid mix – CAMX	Sphera	2021	No
	US	Electricity grid mix – ERCT	Sphera	2021	No
	US	Electricity grid mix – FRCC	Sphera	2021	No
	US	Electricity grid mix – HIMS	Sphera	2021	No
	US	Electricity grid mix – HIOA	Sphera	2021	No
	US	Electricity grid mix – MROE	Sphera	2021	No
	US	Electricity grid mix – MROW (without MISO)	Sphera	2020	No
	US	Electricity grid mix – NEWE	Sphera	2021	No
	US	Electricity grid mix – NWPP	Sphera	2021	No
	US	Electricity grid mix – NYCW	Sphera	2021	No
	US	Electricity grid mix – NYLI	Sphera	2021	No
	US	Electricity grid mix – NYUP	Sphera	2021	No
	US	Electricity grid mix – RFCE	Sphera	2021	No
	US	Electricity grid mix – RFCM	Sphera	2021	No
	US	Electricity grid mix – RFCW	Sphera	2021	No
	US	Electricity grid mix – RMPA	Sphera	2021	No
	US	Electricity grid mix – SPNO	Sphera	2021	No

Table 3-11: Key energy datasets used in inventory analysis

	US	Electricity grid mix – SPSO	Sphera	2021	No
	US	Electricity grid mix – SRMV	Sphera	2021	No
	US	Electricity grid mix – SRMW	Sphera	2021	No
	US	Electricity grid mix – SRSO	Sphera	2021	No
	US	Electricity grid mix – SRTV	Sphera	2021	No
	US	Electricity grid mix – SRVC	Sphera	2021	No
	US	Electricity grid mix (eGRID)	Sphera	2021	No
Fuel Oil	US	Thermal energy from heavy fuel oil (HFO)	Sphera	2021	No
	US	Thermal energy from light fuel oil (LFO)	Sphera	2021	No
Gasoline	US	Gasoline mix (premium, 100% fossil) at filling station	Sphera	2021	No
Natural gas	US	Thermal energy from natural gas	Sphera	2021	No
Propane	US	Propane at refinery	Sphera	2021	No
	US	Thermal energy from propane	Sphera	2021	No

3.3.2. Raw materials and processes

Data for upstream and downstream raw materials and unit processes were obtained from the GaBi 2021.2 database. Table 3-12 shows the most relevant LCI datasets used in modeling the product systems.

Table 3-12: Key material and process datasets used in inventory analysis							
Material / Process	Dataset name	Geo. Ref.	Data Provider	Ref. Year	Proxy*		
Primary Aluminum	Primary aluminum ingot	RNA	AA	2021	No		
Secondary Aluminum	Secondary aluminum ingot (95% recycled content)	RNA	AA	2021	No		
Water	Tap water from surface water	US	Sphera	2021	No		
Alloying elements							
Mg	Magnesium	CN	Sphera	2021	No		
Si	Silicon mix (99%)	GLO	Sphera	2021	No		
Cu	Copper (99.99%; cathode)	GLO	ICA	2021	No		
Mn	Manganese	GLO	Sphera	2021	No		
Titanium alloy	Titanium alloy (Ti6Al4V)	GLO	Sphera	2021	No		
MgCl2	Magnesium chloride	DE	Sphera	2021	Geo		
Ferro chrome	Ferro chrome high carbon, consumption mix	DE	Sphera	2021	Geo		
Ferro-Vanadium	Ferro-Vanadium	ZA	Sphera	2021	Geo		
Zirconium silicate	Zirconium silicate	GLO	Sphera	2021	No		
Titanium	Titanium	GLO	Sphera	2021	No		

Iron ore mix	Iron ore mix	US	Sphera	2021	No
Ar	Argon (highly pure)	US	Sphera	2021	No
Oxygen	Oxygen (gaseous)	US	Sphera	2021	No
N2	Nitrogen (gaseous)	US	Sphera	2021	No
NH3	Ammonia (high purity)	DE	Sphera	2021	No
Boron trioxide	Boron trioxide (estimation)	DE	Sphera	2021	No
NaHCO3	Sodium bicarbonate	US	Sphera	2021	No
NaCl	Sodium chloride (rock salt)	US	Sphera	2021	No
Si sand	Silica sand (flour)	US	Sphera	2021	No
Extrusion chemicals					
Sodium hydroxide	Sodium hydroxide (caustic soda) mix (100%)	EU-28	Sphera	2021	Geo
Trough filter	Glass fibre mesh	DE	Sphera	2021	Geo
Paint	Water based paint white (EN15804 A1-A3)	DE	Sphera	2021	No
Potassium hydroxide	Potassium hydroxide (KOH)	US	Sphera	2021	Geo
Chrome phosphate	Dispersion agent (mixture of phosphate with polyacrylate)	GLO	Sphera	2021	Tech
Sodium sulfite	Sodium hydrogen sulfite (from NaOH and SO2)	US	Sphera	2021	No
Aluminium chloride	Aluminium chloride (approximation)	IN	Sphera	2021	Geo
Flouride accelerator	Aluminium fluoride	DE	Sphera	2021	Geo
Steel die	Fabricated steel plate - American Inst. of Steel Construction (AISC) (A1-A3)	US	Sphera	2021	No
Solvent	Rinsing-agent (100% solvents)	DE	Sphera	2021	Geo
Paint and chemicals					
Primer	Clear coat powder	DE	Sphera	2021	Geo
Paint (solid)	Coating powder (industry; outside; black)	DE	Sphera	2021	Geo
Paint (PVDF)	Polyvinylidene fluoride (PVDF)	DE	Sphera	2021	Geo
Paint (liquid)	Emulsion paint (synthetic resin)	EU-28	Sphera	2021	Geo
Paint solvent	Solvents (for can manufacturing)	US	Sphera	2021	No
Cleaning agent	Non-ionic surfactant (ethylene oxid dervatives)	GLO	Sphera	2021	No
Pre-treatment chemicals	Coagulant mix	DE	Sphera	2021	Geo
	Application base coat/primer water-based (windows, white)	DE	Sphera	2021	Geo
	Ferrous sulfate	US	Sphera	2021	No
	Sulphuric acid aq. (96%)	US	Sphera	2021	No
	Nitrogen (liquid)	US	Sphera	2021	No
	Refrigerant 407 C	DE	Sphera	2021	No
	Benzyl alcohol	EU-28	Sphera	2021	Geo

	o-Xylene	US	Sphera	2021	No
	Ethylene glycol	US	Sphera	2021	No
Anodizing chemicals					
Sulphuric acid and de-ox agent	Sulphuric acid (75%)	US	Sphera	2021	No
EDTA	Ethylenediaminetetraacetic acid (EDTA) (estimated)	US	Sphera	2021	No
Ammonium biflouride	Hydrogen fluoride	DE	Sphera	2021	No
NH4OH	Ammonia water (weight share 25% NH3)	US	Sphera	2021	No
Defoamer	Defoamer	DE	Sphera	2021	Geo
Nitric acid	Nitric acid (60%)	US	Sphera	2021	No
Hydrazine	Hydrazine hydrate/hydrazine (estimation)	US	Sphera	2021	No
Nickel acetate	Vinyl acetate (Acetic acid vinyl ester, VAM)	US	Sphera	2021	No
Alkylbenzenesulfonate	Sodium alkylbenzenesulfonate (from benzene and paraffins over alkyl chloride)	DE	Sphera	2021	No
НСІ	Hydrochloric acid 32% (primarily from chlorine, H2 Cracker)	US	Sphera	2021	No
H ₂ O ₂	Hydrogen peroxide aq. (highly pure, 30%)	US	Sphera	2021	No
Naphthalene	Naphthalene [estimated]	EU-28	Sphera	2021	No
Mg(OH)2	Magnesium Hydroxide (from sea water)	EU-28	Sphera	2021	No
H ₃ PO ₄	Phosphoric acid (highly pure)	US	Sphera	2021	No
Seal (Sealing agent)	Sodium acetate (2011)	US	Sphera	2021	No
Thermal Improvement					
PU foam	Polyurethane foam (PUR)	DE	Sphera	2021	No
PA 6	Polyamide 6 Granulate (PA 6) Mix	DE	Sphera	2021	No
Melamin resin	Melamin resin (MF)	US	Sphera	2021	No
Polyester Resin	Polyester Resin (unsaturated) (UP)	US	Sphera	2021	No
Aliphatic Isocyanates	Aliphatic Isocyanates	EU-28	ALIPA	2021	Geo
Thermoplastic polymer	Thermoplastic starch polymer (TPS), unblended	US	Sphera	2021	No
Coating solvent	Coating solvent-based (industry; white) (approximation)	US	Sphera	2021	No
Waste treatment					
Waste water	Municipal waste water treatment (mix)	US	Sphera	2020	No
	Glass/inert on landfill Sphera	US	Sphera	2020	No
Packaging					
	Softwood lumber	RNA	CORRIM	2021	No
	Softwood plywood	RNA	CORRIM	2021	No
	Steel wire rod	GLO	Worldstee	2021	No

Nylon (PA 6.6) - yarn	RNA	Sphera	2021	No
Kraft paper (EN15804 A1-A3)	RNA	Sphera	2021	No
Average Corrugated Product	US	CPA	2021	No
Polyethylene film (LDPE/PE-LD)	US	Sphera	2021	No
Cotton - fabric (based on US cotton yarn, conventional)	US	Sphera	2021	No
Elastomer joint tape, silicone rubber (EN15804 A1-A3)	DE	Sphera	2021	Geo
Glass fibres	US	Sphera	2021	No

* Geo.: Geographical proxy; Tech.: Technological proxy

3.3.3. Transportation

Average transportation distances and modes of transport are included for the transport of major raw materials to production and assembly facilities.

The GaBi 2021 database was used to model transportation. Truck transportation within the United States was modeled using the GaBi U.S. truck transportation datasets based on fuel economy data from the U.S. EPA's SmartWay program and emissions data from the U.S. EPA's MOVES model.

Transport/Fuel	Geographic Reference	Dataset name	Data Provider	Ref. Year	Proxy?*
Mode					
Ship	GLO	Bulk commodity carrier, average, ocean going	Sphera	2021	No
Rail	GLO	Rail transport cargo - average, average train, gross tonne weight 1,000t / 726t payload capacity	Sphera	2021	No
Truck	US	Truck - heavy/bulk (EPA SmartWay)	Sphera	2021	No
Fuel					
Diesel	US	Diesel mix at filling station	Sphera	2017	No
Fuel oil	US	Heavy fuel oil at refinery (2.5w.% S)	Sphera	2017	No

Table 3-13: Transportation	n datasets	used in	the inventory
----------------------------	------------	---------	---------------

* No = no proxy used; Tech. = technological proxy; Geo. = geographic proxy

4. LCIA Results

This section contains the results for the impact categories and additional metrics defined in section 0. It shall be reiterated at this point that the reported impact categories represent impact potentials, i.e., they are approximations of environmental impacts that could occur if the emissions would (a) follow the underlying impact pathway and (b) meet certain conditions in the receiving environment while doing so. In addition, the inventory only captures that fraction of the total environmental load that corresponds to the chosen functional unit (relative approach).

LCIA results are therefore relative expressions only and do not predict actual impacts, the exceeding of thresholds, safety margins, or risks.

4.1. Overall Results

The life cycle impact results for the various extrusion products are presented in Table 4-1 through Table 4-5. The majority of impacts lie with the production stage of the life cycle. Module D burdens are negative due to the credit given for recycling at EoL. While all extrusion products have the same recycling rate and recycled content, the generation of scrap during the finishing processes leads to an increased credit in module D compared to the mill finished extrusion.

4.1.1. Mill finish extrusion

Table 4-1: Life cycle impact assessment results per metric ton of aluminum extrusion products (Mill Finish)

Impact Category	Unit	A1	A2	A3	C1	C2	C4	D			
LIFE CYCLE IMPACTS ASSESSMENT (LCIA) RESULTS											
IPCC, AR5 (IPCC, 2013)											
Global warming potential (GWP 100)	kg CO ₂ eq.	7.80E+03	1.27E+01	2.44E+03	-	1.02E+01	2.20E+00	-8.38E+03			
TRACI v2.1											
Ozone depletion potential (ODP)	kg CFC 11 eq.	1.86E-10	2.55E-15	2.82E-07	-	2.13E-15	7.35E-15	-2.81E-12			
Acidification potential (AP)	kg SO ₂ eq.	3.43E+01	7.67E-02	3.07E+00	-	1.97E-02	9.37E-03	-3.93E+01			
Eutrophication potential (EP)	kg N eq.	7.93E-01	5.95E-03	2.29E-01	-	2.83E-03	5.22E-04	-8.70E-01			
Smog formation potential (SFP)	kg O₃ eq.	2.94E+02	1.96E+00	6.08E+01	-	4.46E-01	1.66E-01	-3.22E+02			
CML-IA v4.8											
Abiotic resource depletion potential of non-renewable (fossil) energy resources (ADP _{fossil})	MJ	7.44E+04	1.82E+02	3.10E+04	-	1.50E+02	3.29E+01	-7.54E+04			
		R	ESOURCE USE	E INDICATORS							

Renewable primary resources used as energy carrier (fuel) (RPR _E)	MJ	4.64E+04	7.17E+00	3.96E+03	-	6.23E+00	2.80E+00	-5.45E+04
Renewable primary resources with energy content used as material (RPR _M)	MJ	-	-	3.32E-05	-	0.00E+00	0.00E+00	0.00E+00
Non-renewable primary resources used as an energy carrier (fuel) (NRPR _E)	MJ	7.60E+04	1.83E+02	3.65E+04	-	1.51E+02	3.36E+01	-7.67E+04
Non-renewable primary resources with energy content used as material (NRPR _M)	MJ	-	-	6.60E+02	-	0.00E+00	0.00E+00	0.00E+00
Renewable secondary fuels (RSF)	MJ	-	-	-	-	-	-	-
Non-renewable secondary fuels (NRSF)	MJ	-	-	-	-	-	-	-
Recovered energy (RE)	MJ	-	-	-	-	-	-	-
Secondary materials (SM)	kg	9.48E+02	-	-	-	-	-	-
Use of net fresh water resources (FW)	m ³	1.54E+02	3.05E-02	1.78E+01	-	2.66E-02	4.62E-03	-1.80E+02
		OUTF	PUT FLOWS &	WASTE FLOW	WS			
Hazardous waste disposed (HWD)	kg	4.83E-05	1.45E-08	3.74E-06	-	1.26E-08	3.18E-09	-4.66E-05
Non-hazardous waste disposed (NHWD)	kg	2.80E+03	1.69E-02	3.20E+01	-	1.39E-02	1.00E+02	-3.30E+03
High-level radioactive waste, conditioned, to final repository (HLRW)	kg	7.48E-04	5.93E-07	2.86E-03	-	5.09E-07	3.24E-07	-6.56E-04
Intermediate- and low-level radioactive waste, conditioned, to final repository (ILLRW)	kg	1.93E-02	1.63E-05	7.89E-02	-	1.40E-05	8.63E-06	-1.66E-02
Components for re-use (CRU)	kg	-	-	-	-	-	-	-
Materials for recycling (MFR)	kg	-	-	3.86E+02	1.04E+03	-	-	2.65E+00
Materials for energy recovery (MER)	kg	-	-	-	-	-	-	-
Recovered energy exported from the product system (EE)	MJ	-	-	-	-	-	-	-

4.1.2. Anodized extrusion

Table 4-2 : Life cycle impact assessment results per metric ton of aluminum extrusion products (Anodized)

Impact Category	Unit	A1	A2	A3	C1	C2	C4	D
	L	IFE CYCLE IMF	PACTS ASSES	SMENT (LCIA)) Results			
IPCC, AR5 (IPCC, 2013)								
Global warming potential (GWP 100)	kg CO_2 eq.	7.88E+03	1.28E+01	2.87E+03	-	1.02E+01	2.20E+00	-8.48E+03
TRACI v2.1								
Ozone depletion potential (ODP)	kg CFC 11 eq.	1.88E-10	2.58E-15	6.78E-07	-	2.13E-15	7.35E-15	-2.84E-12
Acidification potential (AP)	kg SO ₂ eq.	3.47E+01	7.75E-02	4.17E+00	-	1.97E-02	9.37E-03	-3.97E+01
Eutrophication potential (EP)	kg N eq.	8.02E-01	6.02E-03	3.11E-01	-	2.83E-03	5.22E-04	-8.81E-01
Smog formation potential (SFP)	kg O₃ eq.	2.98E+02	1.98E+00	7.37E+01	-	4.46E-01	1.66E-01	-3.26E+02
CML-IA v4.8								
Abiotic resource depletion potential of non-renewable (fossil) energy resources (ADP _{fossil})	MJ	7.52E+04	1.84E+02	3.66E+04	-	1.50E+02	3.29E+01	-7.63E+04
		Res	SOURCE USE	INDICATORS				
Renewable primary resources used as energy carrier (fuel) (RPR _E)	MJ	4.69E+04	7.25E+00	5.33E+03	-	6.23E+00	2.80E+00	-5.51E+04
Renewable primary resources with energy content used as material (RPR _M)	MJ	-	-	3.36E-05	-	-	-	-
Non-renewable primary resources used as an energy carrier (fuel) (NRPR _E)	MJ	7.68E+04	1.85E+02	4.39E+04	-	1.51E+02	3.36E+01	-7.77E+04
Non-renewable primary resources with energy content used as material (NRPR _M)	MJ	-	-	6.69E+02	-	-	-	-
Renewable secondary fuels (RSF)	MJ	-	-	-	-	-	-	-
Non-renewable secondary fuels (NRSF)	MJ	-	-	-	-	-	-	-
Recovered energy (RE)	MJ	-	-	-	-	-	-	-
Secondary materials (SM)	kg	9.58E+02	-	-	-	-	-	-
Use of net fresh water resources (FW)	m ³	1.56E+02	3.09E-02	3.16E+01	-	2.66E-02	4.62E-03	-1.83E+02
		Ουτρι	JT FLOWS &	WASTE FLOW	S			
Hazardous waste disposed (HWD)	kg	4.88E-05	1.47E-08	5.58E+00	-	1.26E-08	3.18E-09	-4.72E-05

Non-hazardous waste disposed (NHWD)	kg	2.83E+03	1.71E-02	7.34E+01	-	1.39E-02	1.00E+02	-3.34E+03
High-level radioactive waste, conditioned, to final repository (HLRW)	kg	7.57E-04	5.99E-07	3.73E-03	-	5.09E-07	3.24E-07	-6.64E-04
Intermediate- and low-level radioactive waste, conditioned, to final repository (ILLRW)	kg	1.95E-02	1.65E-05	1.03E-01	-	1.40E-05	8.63E-06	-1.68E-02
Components for re-use (CRU)	kg	-	-	-	-	-	-	-
Materials for recycling (MFR)	kg	-	-	3.90E+02	1.06E+03	-	-	2.68E+00
Materials for energy recovery (MER)	kg	-	-	-	-	-	-	-
Recovered energy exported from the product system (EE)	MJ	-	_	-	_	-	-	-

4.1.3. Painted extrusion

Table 4-3 : Life cycle impact assessment results per metric ton of aluminum extrusion products (Painted)

Impact Category	Unit	A1	A2	A3	C1	C2	C4	D
	I	LIFE CYCLE IM	PACTS ASSES	SMENT (LCIA)) RESULTS			
IPCC, AR5 (IPCC, 2013)								
Global warming potential (GWP 100)	kg CO_2 eq.	8.18E+03	1.30E+01	3.48E+03	-	1.02E+01	2.20E+00	-8.54E+03
TRACI v2.1								
Ozone depletion potential (ODP)	kg CFC 11 eq.	1.29E-06	2.62E-15	9.96E-06	-	2.13E-15	7.35E-15	-2.86E-12
Acidification potential (AP)	kg SO ₂ eq.	3.55E+01	7.86E-02	4.45E+00	-	1.97E-02	9.37E-03	-4.00E+01
Eutrophication potential (EP)	kg N eq.	8.43E-01	6.10E-03	3.60E-01	-	2.83E-03	5.22E-04	-8.87E-01
Smog formation potential (SFP)	kg O₃ eq.	3.08E+02	2.01E+00	8.59E+01	-	4.46E-01	1.66E-01	-3.29E+02
CML-IA v4.8								
Abiotic resource depletion potential of non-renewable (fossil) energy resources (ADP _{fossil})	MJ	8.04E+04	1.86E+02	4.64E+04	-	1.50E+02	3.29E+01	-7.68E+04
		Re	SOURCE USE	INDICATORS				
Renewable primary resources used as energy carrier (fuel) (RPR _E)	MJ	4.80E+04	7.35E+00	5.59E+03	-	6.23E+00	2.80E+00	-5.55E+04
Renewable primary resources with energy content used as material (RPR _M)	MJ	-	-	3.41E-05		-	-	-

Non-renewable primary resources used as an energy carrier (fuel) (NRPR _E)	MJ	8.22E+04	1.88E+02	5.12E+04	-	1.51E+02	3.36E+01	-7.82E+04
Non-renewable primary resources with energy content used as material (NRPR _M)	MJ	-	-	2.60E+03	-	-	-	-
Renewable secondary fuels (RSF)	MJ	-	-	-	-	-	-	-
Non-renewable secondary fuels (NRSF)	MJ	-	-	-	-	-	-	-
Recovered energy (RE)	MJ	-	-	-	-	-	-	-
Secondary materials (SM)	kg	9.72E+02	-	-	-	-	-	-
Use of net fresh water resources (FW)	m ³	1.59E+02	3.13E-02	2.34E+01	-	2.66E-02	4.62E-03	-1.84E+02
		OUTP	UT FLOWS &	WASTE FLOW	VS			
Hazardous waste disposed (HWD)	kg	5.01E-05	1.49E-08	4.88E-02	-	1.26E-08	3.18E-09	-4.75E-05
Non-hazardous waste disposed (NHWD)	kg	2.88E+03	1.73E-02	3.80E+01	-	1.39E-02	1.00E+02	-3.36E+03
High-level radioactive waste, conditioned, to final repository (HLRW)	kg	8.37E-04	6.08E-07	3.43E-03	-	5.09E-07	3.24E-07	-6.69E-04
Intermediate- and low-level radioactive waste, conditioned, to final repository (ILLRW)	kg	2.16E-02	1.67E-05	9.45E-02	-	1.40E-05	8.63E-06	-1.69E-02
Components for re-use (CRU)	kg	-	-	-	-	-	-	-
Materials for recycling (MFR)	kg	-	-	3.96E+02	1.06E+03	-	-	2.72E+00
Materials for energy recovery (MER)	kg	-	-	-	-	-	-	-
Recovered energy exported from the product system (EE)	MJ	-	-	-	-	-	-	-

4.1.4. Thermally treated anodized extrusion

Table 4-4 : Life cycle impact assessment results per metric ton of thermally treated anodized aluminum extrusion products

Impact Category	Unit	A1	A2	A3	C1	C2	C4	D
	L	IFE CYCLE IM	PACTS ASSES	SMENT (LCIA)	RESULTS			
IPCC, AR5 (IPCC, 2013)								
Global warming potential (GWP 100)	kg CO₂ eq.	8.28E+03	2.65E+01	3.49E+03	-	1.02E+01	2.20E+00	-8.61E+03
TRACI v2.1								
Ozone depletion potential (ODP)	kg CFC 11 eq.	3.76E-07	5.42E-15	6.77E-07	-	2.13E-15	7.35E-15	-2.88E-12

Acidification potential (AP)	kg SO ₂ eq.	3.53E+01	1.18E-01	4.66E+00	-	1.97E-02	9.37E-03	-4.03E+01
Eutrophication potential (EP)	kg N eq.	1.03E+00	1.07E-02	3.53E-01	-	2.83E-03	5.22E-04	-8.94E-01
Smog formation potential (SFP)	kg O₃ eq.	3.09E+02	2.91E+00	8.44E+01	-	4.46E-01	1.66E-01	-3.31E+02
CML-IA v4.8								
Abiotic resource depletion potential of non-renewable (fossil) energy resources (ADP _{rossil})	MJ	8.27E+04	3.83E+02	4.65E+04	-	1.50E+02	3.29E+01	-7.74E+04
		Re	SOURCE USE	INDICATORS				
Renewable primary resources used as energy carrier (fuel) (RPR_E)	MJ	4.79E+04	1.55E+01	6.01E+03	-	6.23E+00	2.80E+00	-5.60E+04
Renewable primary resources with energy content used as material (RPR _M)	MJ	-	-	3.36E-05	-	-	-	-
Non-renewable primary resources used as an energy carrier (fuel) (NRPR _E)	MJ	8.10E+04	3.86E+02	5.44E+04	-	1.51E+02	3.36E+01	-7.88E+04
Non-renewable primary resources with energy content used as material (NRPR _M)	MJ	3.57E+03	-	6.68E+02	-	-	-	-
Renewable secondary fuels (RSF)	MJ	-	-	-	-	-	-	-
Non-renewable secondary fuels (NRSF)	MJ	-	-	-	-	-	-	-
Recovered energy (RE)	MJ	-	-	-	-	-	-	-
Secondary materials (SM)	kg	9.57E+02	-	-	-	-	-	-
Use of net fresh water resources (FW)	m ³	1.59E+02	6.63E-02	4.41E+01	-	2.66E-02	4.62E-03	-1.85E+02
		Outp	UT FLOWS &	WASTE FLOW	/S			
Hazardous waste disposed (HWD)	kg	4.96E-05	3.15E-08	5.57E+00	-	1.26E-08	3.18E-09	-4.79E-05
Non-hazardous waste disposed (NHWD)	kg	2.84E+03	3.56E-02	7.64E+01	-	1.39E-02	1.00E+02	-3.39E+03
High-level radioactive waste, conditioned, to final repository (HLRW)	kg	8.98E-04	1.28E-06	3.97E-03	-	5.09E-07	3.24E-07	-6.74E-04
Intermediate- and low-level radioactive waste, conditioned, to final repository (ILLRW)	kg	2.32E-02	3.52E-05	1.10E-01	-	1.40E-05	8.63E-06	-1.71E-02
Components for re-use (CRU)	kg	-	-	-	-	-	-	-
Materials for recycling (MFR)	kg	-	-	3.90E+02	1.07E+03	-	-	2.67E+00
Materials for energy recovery (MER)	kg	-	-	-	-	-	-	-

Recovered energy exported	MJ	-	-	-	-	-	-	-
from the product system								
(EE)								

4.1.5. Thermally treated painted extrusion

Table 4-5 : Life cycle impact assessment results per metric ton of thermally treated painted aluminum extrusion products

Impact Category	Unit	A1	A2	A3	C1	C2	C4	D
		LIFE CYCLE IN	IPACTS ASSES	SMENT (LCIA) Results			
IPCC, AR5 (IPCC, 2013)						•	·	
Global warming potential (GWP 100)	kg CO ₂ eq.	8.57E+03	2.66E+01	4.10E+03	-	1.02E+01	2.20E+00	-8.67E+03
TRACI v2.1								
Ozone depletion potential (ODP)	kg CFC 11 eq.	1.66E-06	5.46E-15	9.95E-06	-	2.13E-15	7.35E-15	-2.90E-12
Acidification potential (AP)	kg SO ₂ eq.	3.61E+01	1.19E-01	4.94E+00	-	1.97E-02	9.37E-03	-4.06E+01
Eutrophication potential (EP)	kg N eq.	1.07E+00	1.08E-02	4.02E-01	-	2.83E-03	5.22E-04	-9.00E-01
Smog formation potential (SFP)	kg O₃ eq.	3.18E+02	2.94E+00	9.65E+01	-	4.46E-01	1.66E-01	-3.34E+02
CML-IA v4.8								
Abiotic resource depletion potential of non-renewable (fossil) energy resources (ADP _{rossil})	MJ	8.79E+04	3.86E+02	5.64E+04	-	1.50E+02	3.29E+01	-7.80E+04
		Ri	ESOURCE USE	INDICATORS				
Renewable primary resources used as energy carrier (fuel) (RPR _E)	MJ	4.89E+04	1.56E+01	6.26E+03	-	6.23E+00	2.80E+00	-5.63E+04
Renewable primary resources with energy content used as material (RPR _M)	MJ	-	-	3.40E-05	-	-	-	-
Non-renewable primary resources used as an energy carrier (fuel) (NRPR _E)	MJ	8.64E+04	3.89E+02	6.16E+04	-	1.51E+02	3.36E+01	-7.94E+04
Non-renewable primary resources with energy content used as material (NRPR _M)	MJ	3.57E+03	-	2.60E+03	-	-	-	-
Renewable secondary fuels (RSF)	MJ	-	-	-	-	-	-	-
Non-renewable secondary fuels (NRSF)	MJ	-	-	-	-	-	-	-
Recovered energy (RE)	MJ	-	-	-	-	-	-	-
Secondary materials (SM)	kg	9.71E+02	-	-	-	-	-	-

Use of net fresh water resources (FW)	m ³	1.62E+02	6.67E-02	3.59E+01	-	2.66E-02	4.62E-03	-1.87E+02				
OUTPUT FLOWS & WASTE FLOWS												
Hazardous waste disposed (HWD)	kg	5.09E-05	3.17E-08	4.88E-02	-	1.26E-08	3.18E-09	-4.82E-05				
Non-hazardous waste disposed (NHWD)	kg	2.88E+03	3.58E-02	4.10E+01	-	1.39E-02	1.00E+02	-3.41E+03				
High-level radioactive waste, conditioned, to final repository (HLRW)	kg	9.78E-04	1.29E-06	3.67E-03	-	5.09E-07	3.24E-07	-6.79E-04				
Intermediate- and low-level radioactive waste, conditioned, to final repository (ILLRW)	kg	2.53E-02	3.54E-05	1.01E-01	-	1.40E-05	8.63E-06	-1.72E-02				
Components for re-use (CRU)	kg	-	-	-	-	-	-	-				
Materials for recycling (MFR)	kg	-	-	3.95E+02	1.08E+03	-	-	2.71E+00				
Materials for energy recovery (MER)	kg	-	-	-	-	-	-	-				
Recovered energy exported from the product system (EE)	MJ	-	-	-	-	-	-	-				

4.2. Contribution Analysis By Life Cycle Stages

Figure 4-1

Figure 4-1presents the detailed contribution results of the extrusion process. The primary drivers of burden are the inputs of aluminum: primary and secondary billet purchases as well as billet coming from companies' own cast houses, which is made from a mix of primary and secondary ingot. Module A1 represents more than 75% of GWP and is the most significant driver of impacts in the extrusion process across all categories. Figures 4-2 through 4-5 show the same contribution results for the other finishes, and the results are in general not substantially different from the mill finish results shown in Figure 4-1.

Figure 4-1: Mill finish extrusion relative environmental impacts of all life cycle stages

Figure 4-2 presents the relative results of the anodized extrusion. Similar to the mill finish product, environmental burdens are driven by the recovery or extraction of feedstock materials, furnace and melt shop operations, and casting. The benefits on the environmental burden resulting from reuse, energy recovery and recycling of aluminum scrap are also relevant, as are the manufacturing and final processing stages.

Figure 4-2: Anodized extrusion relative environmental impacts of all life cycle stages

Figure 4-3 represents painted extrusion results.

Figure 4-3: Painted extrusion relative environmental impacts of all life cycle stages

Figure 4-4, Figure 4-5, and Figure 4-6 present the thermally improved painted, and anodized relative results.

Figure 4-4: Thermally treated anodized aluminum extrusion relative environmental impacts of all life cycle stages

4.3. Fabrication Contribution Analysis

To better understand the sources of potential environmental impacts within the aluminum extrusion process, relative contributions from different processing stages are presented in Figure 4-6, Figure 4-7, Figure 4-8, Figure 4-9 and Figure 4-10.

The results are broken down into the following categories: for mill-finish extrusions, the extrusion and the cast house impacts are presented separately, for the remaining products (anodized, painted, anodized thermally treated and painted thermally treated), cast house impacts are combined with the extrusion impacts.

As seen in Figure 4-1, a large proportion of the impacts associated with mill finish aluminum extrusion product is due to the primary aluminum ingots used as a raw material input to the manufacturing stages, followed by the extrusion process. These impacts are largely offset by the recycling credit (module D), representing a decrease of at least 40% across all impact categories.

Figure 4-6: Mill finish aluminum extrusion relative environmental impacts from different processing stages

Figure 4-7: Anodized aluminum extrusion relative environmental impacts from different processing stages

Figure 4-8: Painted aluminum extrusion relative environmental impacts from different processing stages

As seen in below Figure 4-9 and Figure 4-10, thermal improvement adds less than 10% to each impact category. The primary driver of the thermal improvement burdens is material inputs, both thermal break material and pretreatment material.

Figure 4-10: Thermally treated painted aluminum extrusion relative environmental impacts from different processing stages

Per the PCR, industry average EPDs are required to report information on the statistical distribution of results for all the LCIA indicators. The min and max results presented in Table 4-6 represent the facilities with the lowest (best) and highest (worst) impacts, respectively. It should be noted that, every company did not have all five unit processes (cast house, extrusion, anodizing, painting, thermal treatment). Min and max facilities are calculated for each impact category only for mill-finished extrusions. The mean and median do not take production volumes across facilities into account (i.e. it is a calculation based on each individual facility as a data point), while the weighted average presented in Table 4-1 to Table 4-5 are calculated via production volume weightings reported by each participating facility. Figure 4-11 shows the GWP distribution across all facilities.

Indicator	Unit	Min (A1-A3)	Max (A1-A3)	Max/Min Ratio (A1-A3)	Mean (A1-A3)	Median (A1- A3)
GWP	kg CO2 eq.	1.47E+03	4.47E+04	3.05E+01	1.25E+04	1.12E+04
ODP	kg CFC 11 eq.	2.21E-10	4.60E-06	2.08E+04	4.85E-07	1.85E-07
AP	kg SO2 eq.	4.25E+00	1.28E+02	3.02E+01	4.58E+01	4.34E+01
EP	kg N eq.	1.55E-01	4.95E+00	3.20E+01	1.26E+00	1.11E+00
SFP	kg 03 eq.	1.11E+03	4.60E+04	4.13E+01	1.17E+04	9.35E+03
ADP _{fossil}	MJ, surplus	6.30E+01	1.16E+03	1.85E+01	4.32E+02	3.93E+02

Table 4-6 Statistical metrics of LCIA results for 1 metric ton of extruded Aluminum (mill finish) across all facilities

Figure 4-11: Result variation for A1-A3 GWP across all facilities (1000 kg of mill-finished Aluminum)

4.4. Sensitivity Analysis

A sensitivity analysis was conducted to examine the GWP result changes while varying of the primary and secondary aluminum composition of mill finish extrusions. It is to be noted that, all participating companies did not have cast house plant and therefore the total amount of scrap, secondary and primary aluminum coming from cast house was reported as an aggregate rather than a contribution from each individual company. A similar strategy was taken into consideration for extrusion as well to maintain the same model assumption and structure. We varied the recycled content and primary aluminum in the extrusion process maintaining the cast house as is. The results of the sensitivity on the primary and recycled content is limited by the amount of recycled content composition in the cast house.

A ten percent increase in primary aluminum in the mill finished product manufacturing will increase the A1-A3 GWP by ~ 1400 kg CO₂eq. This is equal to say that a 10% increase in recycled aluminum content will reduce the carbon footprint by the same amount.

Figure 4-12: Sensitivity analysis - Impact of primary ingot and recycled content on mill-finished Aluminum extrusions

4.5. Scenario Analysis

To see the effect of primary aluminum sourcing, a scenario analysis was conducted to alternate the sourcing from different regions or countries other than the baseline case of the North American consumption mix. The metal compositions – shares of primary and recycled metal in the products, are kept unchanged for the scenario analysis.

Figure 4-13 shows the GWP changes of primary aluminum sourcing on cradle-to-gate analysis. The regions and countries included in the scenario analysis are:

RNA represents the weighted average of primary aluminum consumption mix in North America, which is the baseline case;

CA represents Canada where primary aluminum is exclusively smelted with hydropower electricity;

CN represents China where primary aluminum is mainly smelted with coal-fired electricity;

RME represents the Middle East where primary aluminum is mainly smelted with natural gas fired electricity.

Figure 4-13: Effect of source of primary aluminum on cradle-to-gate carbon footprint (RNA: North America, CA: Canada, CN: China, RME: Middle East)

5.1. Identification Of Relevant Findings

For the surface treated aluminum extrusions, most of the impacts across all categories are due to the cast house and extrusions process. Surface treatments like painting and anodizing added 5% and 14% GWP impacts on top of the mill-finish extrusions. Painted thermally treated and anodized thermally treated extrusions showed a 24% and 15% GWP increase in impacts when compared to the mill finished, not thermally treated, product. Anodization showed better environmental performance than painting. Thermal treatment on top of surface treatments like painting and anodizing added approximately 10% extra in GWP impact and between an additional 13-15% to EP impacts.

These observations are also consistent across all impact categories. The primary aluminum and its transformation through the casting process are the highest contributors for all impacts categories for mill finish extrusions. All impacts categories were also largely offset by the aluminum credit given in module D.

5.2. Assumptions And Limitations

As discussed in Section 3.2.3, three of eight companies did not provide data for their own billet, so primary ingot was modeled using the Aluminum Association dataset, and secondary billet was modeled based on the ratio of primary ingot and aluminum scrap corresponding to the recycled content of the billet. Both primary ingot and aluminum scrap went through a remelting process. 6 of 27 total extrusions facilities were not able to provide the recycled content of their purchased secondary billet, the industry average (75%) was used.

Anodization chemicals were modeled using proxies based on the masses available in technical data sheets (TDS) and safety data sheets (SDS). In cases where these masses were incomplete, masses were estimated based on best available data and expert judgement.

For one participating company within AEC, the painting and powder coating data were collected together and the inputs and outputs (paint, water, energy, waste, product, etc.) have all been combined under the painting process to facilitate modelling and calculation. This assumption was taken to this study as both processes used the same type of paints and chemicals.

It was not always possible to distinguish intermediate flows between extrusion and the finishing steps. One example of this is packaging. To avoid double counting of packaging impacts, total packaging for all six products was aggregated in extrusion. Although packaging would typically be more intense for painted and anodized product in order to protect the surface finish.

Where the water inputs and outputs did not balance, it was assumed the difference evaporated as water vapor.

5.3. Data Quality Assessment

Inventory data quality is judged by its precision (measured, calculated, literature, or estimated), completeness (e.g., unreported emissions), consistency (degree of uniformity of the methodology applied) and representativeness (geographical, temporal, and technological).

To cover these requirements and to ensure reliable results, first-hand industry data in combination with consistent background LCA information from the GaBi ts database 2021 were used. The LCI datasets from the GaBi CUP 2021.2 database are widely distributed and used with the GaBi 10 Software system for life cycle engineering. The datasets have been used in LCA models worldwide in industrial and scientific applications in internal as well as in many critically reviewed and published studies. In the process of providing these datasets they are cross-checked with other databases and values from industry and science.

5.3.1. Precision and completeness

- Precision: As the majority of the relevant foreground data are measured data or calculated based on primary information sources of the owner of the technology, precision is considered to be high. Seasonal variations and variations across different manufacturers were balanced out by using yearly averages and production-weighted averages. All background data are sourced from GaBi databases with the documented precision.
- ✓ Completeness: Each foreground process was checked for mass balance and completeness of the emission inventory. No data were knowingly omitted. Completeness of foreground unit process data is considered to be high. All background data are sourced from GaBi databases with the documented completeness.

5.3.2. Consistency and reproducibility

- ✓ Consistency: To ensure data consistency, all primary data were collected with the same level of detail, while all background data were sourced from the GaBi databases.
- ✓ Reproducibility: Reproducibility is supported as much as possible through the disclosure of inputoutput data, dataset choices, and modeling approaches in this report. Based on this information, any third party should be able to approximate the results of this study using the same data and modeling approaches.

5.3.3. Representativeness

- ✓ Temporal: All primary data were collected for a twelve-month period during the 2020 and 2021 calendar years. All secondary data come from the GaBi database 2021 and are representative of the years 2020-2021. As the study intended to compare the product systems for the reference year 2020/2021, temporal representativeness is considered to be high.
- Geographical: All primary and secondary data were collected specific to the countries or regions under study. A map showing locations of companies that provided primary data is shown in Figure 5-1.
 Where country-specific or region-specific data were unavailable, proxy data were used. Geographical representativeness is considered to be high.

✓ Technological: All primary and secondary data were modeled to be specific to the technologies or technology mixes under study. Where technology-specific data were unavailable, proxy data were used. Technological representativeness is considered to be high. Data was collected from the 8 participating manufacturers and is representative of AEC production.

5.4. Model Completeness And Consistency

5.4.1. Completeness

All relevant process steps for each product system were considered and modeled to represent each specific situation. The process chain is considered sufficiently complete and detailed with regard to the goal and scope of this study.

5.4.2. Consistency

All assumptions, methods, and data are consistent with each other and with the study's goal and scope. Differences in background data quality were minimized by predominantly using LCI data from the GaBi database 2021. System boundaries, allocation rules, and impact assessment methods have been applied consistently throughout the study.

5.5. Conclusions And Recommendations

5.5.1. Conclusions

The goal of this study was to support the development and publication of EPDs for AEC's aluminum extrusions. The results of this study may also be used as an initial benchmark to track future improvements across the industry.

5.5.2. Recommendations

Future participants in the study should consider sub-meters in their facilities to allow for more accurate divisions of operations inputs between the extrusion and finishing process. This would reduce the assumptions required when making these divisions.

Opportunities for improving the overall impact of aluminum extrusions lie with the upstream production of aluminum. Participating companies can work to reduce their scrap rate, requiring less input of aluminum, or focus on increasing their input of secondary ingot or billet.

References

- AA. (2018, August). International Alloy Designations and Chemical Compositions Limits for Wrought Aluminum and Wrought Aluminum Alloys. Arlington, Virginia, United States.
- AA. (2022). The Environmental Footprint of Semi-finished Aluminum Products in North America: A Life Cycle Assessment Report. Aluminum Association.
- ACLCA. (2019). ACLCA Guidance to Calculating Non-LCIA Inventory Metrics in Accordance with ISO 21930:2017.
- Bare, J. (2012). Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) - Software Name and Version Number: TRACI version 2.1 - User's Manual. Washington, D.C.: U.S. EPA.
- CML. (2016, September 05). CML-IA Characterisation Factors. Retrieved from Universiteit Leiden: https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisationfactors
- EAA. (2021). https://www.european-aluminium.eu/. Retrieved from European Aluminum Website.
- EPA. (2012). Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) User's Manual. Washington, D.C.: U.S. EPA.
- EPA. (2012). Tool for the Reduction and Assessment of Chemical and other Environmental Impacts (TRACI) User's Manual. Washington, D.C.: U.S. EPA.
- GaBi. (2021). Retrieved from https://gabi.sphera.com/support/gabi/gabi-lcia-documentation/cml-2001/
- Guinée J. B. et al. (2001). *Life cycle assessment; An operational guide to the ISO standards; Parts 1 and* 2. Den Haag and Leiden, The Netherlands,: Ministry of Housing, Spatial Planning and Environment (VROM) and Centre of Environmental Science (CML). Retrieved from http://www.leidenuniv.nl/cml/ssp/projects/lca2/lca2.html
- Guinée J. B. et al. (n.d.). *Life cycle assessment; An operational guide to the ISO standards; Part 3: Scientific Background.* Den Haag and Leiden, The Netherlands: Ministry of Housing, Spatial Planning and Environment (VROM) and Centre of Environmental Science (CML). Retrieved from http://www.leidenuniv.nl/cml/ssp/projects/lca2/lca2.html
- Guinée, J. B.; Gorrée, M.; Heijungs, R.; Huppes, G.; Kleijn, R.; de Koning, A.; van Oers, L.; Wegener
 Sleeswijk, A.; Suh, S.; Udo de Haes, H. A.; de Bruijn, H.; van Duin, R.; Huijbregts, M. (2002).
 Handbook on life cycle assessment. Operational guide to the ISO standards. Dordrecht: Kluwer.
- International Aluminum Association. (2013). *Global Aluminum Recycling: A Cornerstone of Sustainable Development.* Retrieved from World Aluminum : www.world-aluminium.org/media/filter_public/2013/01/15/fl0000181.pdf
- IPCC. (2006). 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 4 Agriculture, Forestry, and Other Land Use. Geneva, Switzerland: IPCC.

- IPCC. (2013). Climate Change 2013: The Physical Science Basis. Genf, Schweiz: IPCC.
- ISO. (2006). ISO 14040: Environmental management Life cycle assessment Principles and framework. Geneva: International Organization for Standardization.
- ISO. (2006). ISO 14044: Environmental management Life cycle assessment Requirements and guidelines. Geneva: International Organization for Standardization.
- ISO. (2017). ISO 21930 Sustainability in building construction Environmental declaration of building products.
- JRC. (2010). *ILCD Handbook: General guide for Life Cycle Assessment Detailed guidance. EUR 24708 EN* (1st ed.). Luxembourg: Joint Research Centre.
- Sphera. (2021). *GaBi LCA Database Documentation*. Retrieved from Sphera: http://databasedocumentation.gabi-software.com
- UL, S. (2022, June 30). Sustainability and Environment Solutions. Retrieved from UL Solutions: https://www.ul.com/services/solutions/sustainability-and-environment-solutions
- ULE. (2022). Part A: PCR Part A for Life Cycle Assessment Calculation Rules and Report Requirements. UL Environment.
- ULE. (2022). Part B: Aluminum construction Product EPD Requirements. UL Environment.
- UNEP. (2011). *Recycling Rates of Metals : A Status Report.* Retrieved from UNE Document Repository: https://wedocs.unep.org/bitstream/handle/20.500.11822/8702/Recycling_Metals.pdf?sequence=1 &isAllowed=y
- UNEP. (2011). Recycling Rates of Metals- A Status Report, A Report of the Working Group on teh Global Metal Flows to the International Resource Panel. Retrieved from UNEP: http://www.unep.org/resourcepanel/Portals/24102/PDFs/Metals_Recycling_Rates_110412-1.pdf
- WRI. (2011). GHG Protocol Product Life Cycle Accounting and Reporting Standard. Washington D.C.: World Resource Institute.